1
|
Yu FL, Zhang MY, Song GW, Ning YS, Wu X, Gao Y. The effect of arsenic on mitochondrial fatty acid metabolism via inhibition of carnitine palmitoyltransferase 1B and choline kinase beta in C2C12 cells. PLoS One 2025; 20:e0320557. [PMID: 40440347 PMCID: PMC12121733 DOI: 10.1371/journal.pone.0320557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Arsenic can enter the human body through environmental exposure via food, drinking water, and chemotherapy for cancer. Prolonged and excessive exposure to arsenic causes various toxic reactions, leading to diseases that significantly impact health and lifespan. Increasing evidence suggests that arsenic damages skeletal muscle tissue by reducing muscle mass and causing atrophy, thereby contributing to conditions such as respiratory and cardiovascular diseases, as well as diabetes. Fatty acid β-oxidation is the most efficient mechanism for ATP production and serves as a primary energy source for tissues, including the heart and skeletal muscles. However, the metabolic mechanisms underlying arsenic's effects on muscle function and pathogenesis remain incompletely understood. In this study, we investigated the role of mitochondrial fatty acid oxidation in arsenic-induced muscular damage using mouse skeletal muscle C2C12 cells. Our results demonstrated a dose-dependent inhibitory effect of sodium arsenite (0-2 µM, 72 hours) on C2C12 cells proliferation, viability, and differentiation (indicated by reduction of myogenic differentiation 1 mRNA expression). Arsenic exposure disrupted mitochondria through increasing reactive oxygen species production, reducing mitochondrial membrane potential to 16.45%, downregulating mitochondrial fatty acid metabolism-related enzymes (carnitine palmitoyltransferase 1B to 15.05% and choline kinase beta mRNA to 49.94%), and decreasing mitochondrial DNA copy number to 42.08%. These findings suggest that arsenic-induced pathological changes in skeletal muscle are associated with impaired mitochondrial membrane function, disrupted fatty acid metabolism, and reduced mitochondrial DNA content in muscle cells.
Collapse
Affiliation(s)
- Fu-Lin Yu
- Department of Cardiovascular Medicine, Xi’an Trade Union Hospital, Xi’an, Shaanxi Province, China
| | - Ming-Yan Zhang
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Gang-Wei Song
- Department of Cardiovascular Medicine, Xi’an Trade Union Hospital, Xi’an, Shaanxi Province, China
| | - Yang-Shan Ning
- Department of Cardiovascular Medicine, Xi’an Trade Union Hospital, Xi’an, Shaanxi Province, China
| | - Xian Wu
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Yan Gao
- Department of Cardiovascular Medicine, Xi’an Trade Union Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
2
|
Yang L, Li X, Ni L, Lin Y. Treatment of endothelial cell dysfunction in atherosclerosis: a new perspective integrating traditional and modern approaches. Front Physiol 2025; 16:1555118. [PMID: 40206381 PMCID: PMC11979162 DOI: 10.3389/fphys.2025.1555118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Atherosclerosis (AS), a prime causative factor in cardiovascular disease, originates from endothelial cell dysfunction (ECD). Comprising a vital part of the vascular endothelium, endothelial cells play a crucial role in maintaining vascular homeostasis, optimizing redox balance, and regulating inflammatory responses. More evidence shows that ECD not only serves as an early harbinger of AS but also exhibits a strong association with disease progression. In recent years, the treatment strategies for ECD have been continuously evolving, encompassing interventions ranging from lifestyle modifications to traditional pharmacotherapy aimed at reducing risk factors, which also have demonstrated the ability to improve endothelial cell function. Additionally, novel strategies such as promising biotherapy and gene therapy have drawn attention. These methods have demonstrated enormous potential and promising prospects in improving endothelial function and reversing AS. However, it is essential to remain cognizant that the current treatments still present significant challenges regarding therapeutic efficacy, long-term safety, and ethical issues. This article aims to provide a systematic review of these treatment methods, analyze the mechanisms and efficacy of various therapeutic strategies, with the goal of offering insights and guidance for clinical practice, and further advancing the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
4
|
Ponzoni M, Coles JG, Maynes JT. Rodent Models of Dilated Cardiomyopathy and Heart Failure for Translational Investigations and Therapeutic Discovery. Int J Mol Sci 2023; 24:3162. [PMID: 36834573 PMCID: PMC9963155 DOI: 10.3390/ijms24043162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Even with modern therapy, patients with heart failure only have a 50% five-year survival rate. To improve the development of new therapeutic strategies, preclinical models of disease are needed to properly emulate the human condition. Determining the most appropriate model represents the first key step for reliable and translatable experimental research. Rodent models of heart failure provide a strategic compromise between human in vivo similarity and the ability to perform a larger number of experiments and explore many therapeutic candidates. We herein review the currently available rodent models of heart failure, summarizing their physiopathological basis, the timeline of the development of ventricular failure, and their specific clinical features. In order to facilitate the future planning of investigations in the field of heart failure, a detailed overview of the advantages and possible drawbacks of each model is provided.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - John G. Coles
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jason T. Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON M5G 0A4, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
5
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
6
|
Wang S, Wang B, Guo G, Chen Y. Cardiac External Counterpulsation Attenuates Myocardial Injury by Regulating NRF2-mediated Ferroptosisin and Oxidative stress Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6477778. [PMID: 36262162 PMCID: PMC9576384 DOI: 10.1155/2022/6477778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Objectives To explore the role of the external counterpulsation (ECP) myocardial injury by controlling NRF2-mediated ferroptosis and oxidative stress damage in acute myocardial infarction. Methods Twenty acute myocardial infarction (AMI) participants hospitalized from January 2021 to January 2022 were enrolled. In addition, 20 healthy individuals who had a physical examination at our hospital served as normal controls. Before the AMI patients were given ECP therapy, the blood samples were collected and echocardiography was performed as the data of AMI cohort. Then, the blood samples were collected and echocardiography was performed following the ECP therapy as the data of AMI + ECP cohort. The heart function was assessed by echocardiography test. Results Our findings demonstrated that ECP could reduce heart damage in patients with AMI. In the current study, we found that ECP could reduce heart damage in patients with AMI through increasing the LV-EF% and enhancing LVEDV and LVESV, and the difference was statistically significant (P < 0.05). ECP could reduce the levels of oxidative stress and ferroptosis markers in blood samples of AMI patients, which was through the upregulation of NRF2 and HO-1 expression, and the difference was statistically significant (P < 0.05). Taken together, all data implied that ECP was able to attenuate myocardial injury by regulating NRF2-mediated ferroptosis and oxidative stress in AMI patients, and the difference was statistically significant (P < 0.05). Conclusion Our findings in this research are that cardiac ECP is able to attenuate myocardial injury by regulating NRF2-mediated ferroptosis and oxidative stress injury in AMI patients. This certainly gives the possibility of a clinically effective treatment for AMI patients, although further clinical trials need to be validated.
Collapse
Affiliation(s)
- ShiXiang Wang
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Bin Wang
- Department of Radiology, Heze Hospital of Traditional Chinese Medicine, Heze 274400, Shandong, China
| | - Guofeng Guo
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Youquan Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| |
Collapse
|
7
|
Yu S, Sun L, Jiang J, He X, Zhou Q. Common variants in AGR1 genes contributed to the risk and traits of cirrhotic cardiomyopathy in Han Chinese population. Biomark Med 2022; 16:331-340. [PMID: 35234520 DOI: 10.2217/bmm-2021-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study aimed to determine the association between polymorphisms of the ARG1 gene and the risk and traits of cirrhotic cardiomyopathy (CCM). Methods: A total of 468 CCM and 1012 cirrhosis patients were enrolled, and 12 single-nucleotide polymorphisms (SNPs) in the ARG1 gene were genotyped. Differences in genotype, allele and haplotype frequencies of the SNPs between the CCM and cirrhosis groups were analyzed by chi-square test. Correlations of the genotypes of SNPs and representative traits of liver and heart function were performed using linear regression analysis. Results: SNPs rs2781666 and rs2781667 were associated with the risk of CCM in both dominant and additive inheritance models. The GG genotype frequency of rs2781666 and CC genotype frequency of rs2781667 were lower in the CCM group than in the cirrhosis group. The G-C haplotype frequency of the block consisting of rs2781666 and rs2781667 was higher and the T-T haplotype frequency was lower in CCM patients than in cirrhosis patients. SNP rs2781666 was associated with the alanine transaminase level, and rs2781667 was associated with the ARG1 level and left atrial diameter. Conclusion: SNPs rs2781666 and rs2781667 in the ARG1 gene were associated with susceptibility to and traits of CCM in the Han Chinese population.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Lei Sun
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| |
Collapse
|