1
|
Moeller SJ, Weinstein JJ, Varnas B, Orellano O, Gil R, Perlman G, Abeykoon S, Meng J, Oprea I, Hu B, Qu W, Slifstein M, Abi-Dargham A. Cholinergic tone abnormalities and relationships with smoking severity in human cigarette smokers: exploratory positron emission tomography study using [ 18F]VAT. Mol Psychiatry 2025:10.1038/s41380-025-02985-3. [PMID: 40164693 DOI: 10.1038/s41380-025-02985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Nicotine acts on the brain cholinergic system to drive the rewarding effects of cigarettes and perpetuate smoking. Prior studies in human smokers have used positron emission tomography (PET) to characterize differences in postsynaptic nicotinic acetylcholine receptors (nAChRs). However, preclinical studies indicate that nicotine also modulates presynaptic cholinergic targets that have implications for transmission, including the vesicular acetylcholine transporter (VAChT). To date, there is a paucity of studies imaging presynaptic targets in human smokers. We conducted an initial PET neuroimaging study with [18F]VAT, which indexes VAChT availability (presynaptic marker of cholinergic tone), in 12 healthy smokers and 13 demographically-matched healthy non-smokers. We tested for group differences in VAChT availability, measured as total distribution volume (VT), in the striatum (main region of interest) and in multiple cortical and subcortical extrastriatal regions. Within smokers, we also tested correlations between VAChT availability and indices of smoking chronicity and tobacco self-administration. Smokers had higher [18F]VAT VT than non-smokers in multiple cortical and subcortical regions (p < 0.05uncorrected). There were no group differences in the striatum. Within smokers, VT in the dorsolateral prefrontal and temporal cortices was positively correlated with smoking chronicity (p < 0.05corrected). This study provides first-line evidence of presynaptic cholinergic differences between smokers and non-smokers, such that VAChT is upregulated in smokers and associated with chronicity. Future studies with larger samples are needed to verify these initial effects. With confirmation, these findings could inform the development of new VAChT-targeting therapeutics that could potentially benefit smokers who have been unable to quit with currently available treatments.
Collapse
Affiliation(s)
- Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jodi J Weinstein
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Benjamin Varnas
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Olivia Orellano
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Roberto Gil
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Greg Perlman
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sameera Abeykoon
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jiayan Meng
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ingrid Oprea
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Bao Hu
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wenchao Qu
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Mark Slifstein
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
2
|
O'Donnell JL, Soda AK, Jiang H, Norris SA, Maiti B, Karimi M, Campbell MC, Moerlein SM, Tu Z, Perlmutter JS. PET Quantification of [ 18F]VAT in Human Brain and Its Test-Retest Reproducibility and Age Dependence. J Nucl Med 2024; 65:956-961. [PMID: 38604762 PMCID: PMC11149597 DOI: 10.2967/jnumed.123.266860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Molecular imaging of brain vesicular acetylcholine transporter provides a biomarker to explore cholinergic systems in humans. We aimed to characterize the distribution of, and optimize methods to quantify, the vesicular acetylcholine transporter-specific tracer (-)-(1-(8-(2-[18F]fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)-piperidin-4-yl)(4-fluorophenyl)methanone ([18F]VAT) in the brain using PET. Methods: Fifty-two healthy participants aged 21-97 y had brain PET with [18F]VAT. [3H]VAT autoradiography identified brain areas devoid of specific binding in cortical white matter. PET image-based white matter reference region size, model start time, and duration were optimized for calculations of Logan nondisplaceable binding potential (BPND). Ten participants had 2 scans to determine test-retest variability. Finally, we analyzed age-dependent differences in participants. Results: [18F]VAT was widely distributed in the brain, with high striatal, thalamic, amygdala, hippocampal, cerebellar vermis, and regionally specific uptake in the cerebral cortex. [3H]VAT autoradiography-specific binding and PET [18F]VAT uptake were low in white matter. [18F]VAT SUVs in the white matter reference region correlated with age, requiring stringent erosion parameters. Logan BPND estimates stabilized using at least 40 min of data starting 25 min after injection. Test-retest variability had excellent reproducibility and reliability in repeat BPND calculations for 10 participants (putamen, 6.8%; r > 0.93). We observed age-dependent decreases in the caudate and putamen (multiple comparisons corrected) and in numerous cortical regions. Finally, we provide power tables to indicate potential mean differences that can be detected between 2 groups of participants. Conclusion: These results validate a reference region for BPND calculations and demonstrate the viability, reproducibility, and utility of using the [18F]VAT tracer in humans to quantify cholinergic pathways.
Collapse
Affiliation(s)
- John L O'Donnell
- Neurology, Washington University in Saint Louis, St. Louis, Missouri;
| | - Anil Kumar Soda
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Hao Jiang
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Scott A Norris
- Neurology, Washington University in Saint Louis, St. Louis, Missouri
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Baijayanta Maiti
- Neurology, Washington University in Saint Louis, St. Louis, Missouri
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Morvarid Karimi
- Neurology, Washington University in Saint Louis, St. Louis, Missouri
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Meghan C Campbell
- Neurology, Washington University in Saint Louis, St. Louis, Missouri
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Stephen M Moerlein
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
- Biochemistry and Molecular Biophysics, Washington University in Saint Louis, St. Louis, Missouri; and
| | - Zhude Tu
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
| | - Joel S Perlmutter
- Neurology, Washington University in Saint Louis, St. Louis, Missouri
- Radiology, Washington University in Saint Louis, St. Louis, Missouri
- Neuroscience, Physical, and Occupational Therapy, Washington University in Saint Louis, St. Louis, Missouri
| |
Collapse
|
3
|
d’Orchymont F, Narvaez A, Raymond R, Sachdev P, Charil A, Krause S, Vasdev N. In vitro evaluation of PET radiotracers for imaging synaptic density, the acetylcholine transporter, AMPA-tarp-γ8 and muscarinic M4 receptors in Alzheimer's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:1-12. [PMID: 38500748 PMCID: PMC10944377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Several therapeutics and biomarkers that target Alzheimer's disease (AD) are under development. Our clinical positron emission tomography (PET) research programs are interested in six radiopharmaceuticals to image patients with AD and related dementias, specifically [11C]UCB-J and [18F]SynVesT-1 for synaptic vesicle glycoprotein 2A as a marker of synaptic density, two vesicular acetylcholine transporter PET radiotracers: [18F]FEOBV and [18F]VAT, as well as the transmembrane AMPA receptor regulatory protein (TARP)-γ8 tracer, [18F]JNJ-64511070, and the muscarinic acetylcholine receptor (mAChR) M4 tracer [11C]MK-6884. The goal of this study was to compare all six radiotracers (labeled with tritium or 18F) by measuring their density variability in pathologically diagnosed cases of AD, mild cognitive impairment (MCI) and normal healthy volunteer (NHV) human brains, using thin-section in vitro autoradiography (ARG). Region of interest analysis was used to quantify radioligand binding density and determine whether the radioligands provide a signal-to-noise ratio optimal for showing changes in binding. Our preliminary study confirmed that all six radiotracers show specific binding in MCI and AD. An expected decrease in their respective target density in human AD hippocampus tissues compared to NHV was observed with [3H]UCB-J, [3H]SynVesT-1, [3H]JNJ-64511070, and [3H]MK-6884. This preliminary study will be used to guide human PET imaging of SV2A, TARP-γ8 and the mAChR M4 subtype for imaging in AD and related dementias.
Collapse
Affiliation(s)
- Faustine d’Orchymont
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
| | - Andrea Narvaez
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
- Enigma Biomedical Group, Inc.Toronto, ON, Canada
| | - Roger Raymond
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
| | | | | | | | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH)Toronto, ON, Canada
- Department of Psychiatry, University of TorontoToronto, ON, Canada
| |
Collapse
|
4
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|
5
|
Albin RL, Kanel P, van Laar T, van der Zee S, Roytman S, Koeppe RA, Scott PJH, Bohnen NI. No Dopamine Agonist Modulation of Brain [ 18F]FEOBV Binding in Parkinson's Disease. Mol Pharm 2022; 19:1176-1182. [PMID: 35289620 PMCID: PMC8983523 DOI: 10.1021/acs.molpharmaceut.1c00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) ligand targets the vesicular acetylcholine transporter. Recent [18F]FEOBV PET rodent studies suggest that regional brain [18F]FEOBV binding may be modulated by dopamine D2-like receptor agents. We examined associations of regional brain [18F]FEOBV PET binding in Parkinson's disease (PD) subjects without versus with dopamine D2-like receptor agonist drug treatment. PD subjects (n = 108; 84 males, 24 females; mean age 68.0 ± 7.6 [SD] years), mean disease duration of 6.0 ± 4.0 years, and mean Movement Disorder Society-revised Unified PD Rating Scale III 35.5 ± 14.2 completed [18F]FEOBV brain PET imaging. Thirty-eight subjects were taking dopamine D2-like agonists. Vesicular monoamine transporter type 2 [11C]dihydrotetrabenazine (DTBZ) PET was available in a subset of 54 patients. Subjects on dopamine D2-like agonists were younger, had a longer duration of disease, and were taking a higher levodopa equivalent dose (LED) compared to subjects not taking dopamine agonists. A group comparison between subjects with versus without dopamine D2-like agonist use did not yield significant differences in cortical, striatal, thalamic, or cerebellar gray matter [18F]FEOBV binding. Confounder analysis using age, duration of disease, LED, and striatal [11C]DTBZ binding also failed to show significant regional [18F]FEOBV binding differences between these two groups. Chronic D2-like dopamine agonist use in PD subjects is not associated with significant alterations of regional brain [18F]FEOBV binding.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States
| | - Prabesh Kanel
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Teus van Laar
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sygrid van der Zee
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert A Koeppe
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|