1
|
Dragan Z, Pollock CA, Huang C. Insight into a multifunctional potassium channel Kv1.3 and its novel implication in chronic kidney disease. Life Sci 2025; 362:123338. [PMID: 39730039 DOI: 10.1016/j.lfs.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Chronic kidney disease (CKD), a global public health problem, causes substantial morbidity and mortality worldwide. Innovative therapeutic strategies to mitigate the progression of CKD are needed due to the limitations of existing treatments. Kv1.3, a voltage-gated potassium ion channel, plays a crucial role in multiple biological processes, including cell proliferation, apoptosis, energy homeostasis, and migration. Inhibition of the Kv1.3 channels has shown beneficial effects in the therapy of a wide range of human diseases such as cancer, autoimmune and neuroinflammatory diseases. Increasing evidence reveals a close link between Kv1.3 and CKD. This review summarises the most recent insights into the physiological functions of the Kv1.3 channel and its pharmacological modulators. Furthermore, the therapeutic potential of targeting Kv1.3 for CKD is also discussed. Collectively, these studies suggested that Kv1.3 channels may serve as a novel target for CKD therapy.
Collapse
Affiliation(s)
- Zac Dragan
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
2
|
Delgado-Ramírez M, López-Serrano AL, Rodríguez-Menchaca AA. Inhibition of Kv2.1 potassium channels by the antidepressant drug sertraline. Eur J Pharmacol 2024; 970:176487. [PMID: 38458411 DOI: 10.1016/j.ejphar.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sertraline is a commonly used antidepressant of the selective serotonin reuptake inhibitors (SSRIs) class. In this study, we have used the patch-clamp technique to assess the effects of sertraline on Kv2.1 channels heterologously expressed in HEK-293 cells and on the voltage-gated potassium currents (IKv) of Neuro 2a cells, which are predominantly mediated by Kv2.1 channels. Our results reveal that sertraline inhibits Kv2.1 channels in a concentration-dependent manner. The sertraline-induced inhibition was not voltage-dependent and did not require the channels to be open. The kinetics of activation and deactivation were accelerated and decelerated, respectively, by sertraline. Moreover, the inhibition by this drug was use-dependent. Notably, sertraline significantly modified the inactivation mechanism of Kv2.1 channels; the steady-state inactivation was shifted to hyperpolarized potentials, the closed-state inactivation was enhanced and accelerated, and the recovery from inactivation was slowed, suggesting that this is the main mechanism by which sertraline inhibits Kv2.1 channels. Overall, this study provides novel insights into the pharmacological actions of sertraline on Kv2.1 channels, shedding light on the intricate interaction between SSRIs and ion channel function.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico.
| | - Ana Laura López-Serrano
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, 78210, Mexico
| |
Collapse
|
3
|
Cai Q, Zha HJ, Yuan SY, Sun X, Lin X, Zheng XY, Qian YX, Xia RF, Luo YS, Shi Z, Su JC, Wan LS. Diterpenoids from Euphorbia fischeriana with Kv1.3 Inhibitory Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:2379-2390. [PMID: 37796721 DOI: 10.1021/acs.jnatprod.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Euphorbia diterpenoids possess inhibitory effects of Kv1.3 ion channel, but most of this research has focused on diterpenoids with jatrophane-related or ingenane-related skeletons. In the present study, nine undescribed (1-9) and 16 known (10-25) diterpenoids, based on jatrophane, lathyrane, ingenane, abietane, and atisane skeletons, were identified from the methanol extract of the aerial parts of Euphorbia fischeriana. The structures were established by analysis of the spectroscopic data as well as by single-crystal X-ray diffraction analysis. Among the isolated diterpenoids, macrocyclic jatrophanes and lathyranes exerted Kv1.3 blocking activity. Compound 8 exhibited good selectivity on the inhibition of the Kv 1.3 channel rather than hERG channel, with a selectivity index over 7.0. The selective activity of lathyrane diterpenoids indicates that macrocyclic diterpenoids have the potential to be further investigated as therapeutic agents for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Qin Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hong-Jing Zha
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Shi-Ying Yuan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China
| | - Xin Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xin-Yu Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ying-Xian Qian
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yue-Shan Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhimian Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
4
|
Zhou CG, Xiang ZN, Zhao N, Sun X, Hu ZF, Wu JL, Xia RF, Chen C, Su JC, Chen JC, Wan LS. Jatrophane Diterpenoids with Kv1.3 Ion Channel Inhibitory Effects from Euphorbia helioscopia. JOURNAL OF NATURAL PRODUCTS 2022; 85:815-827. [PMID: 35245067 DOI: 10.1021/acs.jnatprod.1c00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemical investigation of bioactive components from the whole plant of Euphorbia helioscopia resulted in the isolation and identification of 17 new jatrophane diterpenoids, namely, heliojatrone D (1) and helioscopids A-P (2-17), along with 11 known analogues (18-28). The structural elucidation of the new diterpenoids was achieved by the comprehensive analysis of HRESIMS, NMR, and X-ray crystallographic data, as well as using electronic circular dichroism. Structurally, heliojatone D (1) is the fourth natural diterpenoid with a rare bicyclo[8.3.0]tridecane skeleton. The inhibitory effect of the isolated diterpenoids against Kv1.3 ion channels was evaluated in a human embryonic kidney 293 cell model transfected with plasmid encoding Kv1.3, resulting in the identification of a series of potent Kv1.3 ion channel inhibitors, with the most active ones (2 and 15) showing IC50 values of 0.9 μM.
Collapse
Affiliation(s)
- Cheng-Gao Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhi-Nan Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ning Zhao
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People's Republic of China
| | - Zhuo-Fan Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Le Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ru-Feng Xia
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jun-Cheng Su
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jia-Chun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|