1
|
Pires CS, da Rocha MJ, Presa MH, Zuge NP, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. N-(3-((3-(trifluoromethyl)phenyl)selanyl)prop-2-yn-1-yl) benzamide induces antidepressant-like effect in mice: involvement of the serotonergic system. Psychopharmacology (Berl) 2024; 241:1663-1678. [PMID: 38635075 DOI: 10.1007/s00213-024-06588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
RATIONALE Major Depressive Disorder (MDD) significantly impairs the quality of life for those affected. While the exact causes of MDD are not fully understood, the deficit of monoamines, especially serotonin and noradrenaline, is widely accepted. Resistance to long-term treatments and adverse effects are often observed, highlighting the need for new pharmacological therapies. Synthetic organic compounds containing selenium have exhibited pharmacological properties, including potential antidepressant effects. OBJECTIVE To evaluate the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) benzamide (CF3SePB) in mice and the involvement of the serotonergic and noradrenergic systems. METHODS Male Swiss mice were treated with CF3SePB (1-50 mg/kg, i.g.) and 30 min later the forced swimming test (FST) or tail suspension test (TST) was performed. To investigate the involvement of the serotonergic and noradrenergic systems in the antidepressant-like effect of CF3SePB, mice were pre-treated with p-CPA (a 5-HT depletor, 100 mg/kg, i.p.) or the receptor antagonists WAY100635 (0.1 mg/kg, s.c., a 5-HT1A receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ondansetron (1 mg/kg, i.p., a 5-HT3 receptor antagonist), GR110838 (0.1 mg/kg, i.p., a 5-HT4 receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenergic receptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenergic receptor antagonist) and propranolol (2 mg/kg, i.p., a non-selective beta-adrenergic receptor antagonist) at specific times before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the FST was performed. RESULTS CF3SePB showed an antidepressant-like effect in both FST and TST and this effect was related to the modulation of the serotonergic system, specially the 5-HT1A and 5-HT3 receptors. None of the noradrenergic antagonists prevented the antidepressant-like effect of CF3SePB. The compound exhibited a low potential for inducing acute toxicity in adult female Swiss mice. CONCLUSION This study pointed a new compound with antidepressant-like effect, and it could be considered for the development of new antidepressants.
Collapse
Affiliation(s)
- Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo,, Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo,, Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
2
|
Besckow EM, Ledebuhr KNB, Pires CS, Rocha MJD, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. Dopaminergic Modulation and Computational ADMET Insights for the Antidepressant-like Effect of N-(3-(Phenylselanyl)prop-2-yn-1-yl)benzamide. ACS Chem Neurosci 2024; 15:1904-1914. [PMID: 38639539 DOI: 10.1021/acschemneuro.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
The compound N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), which combines a selenium atom and a benzamide nucleus in an organic structure, has demonstrated a fast antidepressant-like effect in mice. This action is influenced by the serotonergic system and represents a promising development in the search for novel antidepressant drugs to treat major depressive disorder (MDD), which often resists conventional treatments. This study aimed to further explore the mechanism underlying the antidepressant-like effect of SePB by investigating the involvement of the dopaminergic and noradrenergic systems in the tail suspension test (TST) in mice and evaluating its pharmacokinetic profile in silico. Preadministration of the dopaminergic antagonists haloperidol (0.05 mg/kg, intraperitoneally (i.p.)), a nonselective antagonist of dopamine (DA) receptors, SCH23390 (0.01 mg/kg, subcutaneously (s.c.)), a D1 receptor antagonist, and sulpiride (50 mg/kg, i.p.), a D2/3 receptor antagonist, before SePB (10 mg/kg, intragastrically (i.g.)) prevented the anti-immobility effect of SePB in the TST, demonstrating that these receptors are involved in the antidepressant-like effect of SePB. Administration of the noradrenergic antagonists prazosin (1 mg/kg, i.p.), an α1-adrenergic antagonist, yohimbine (1 mg/kg, i.p.), an α2-adrenergic antagonist, and propranolol (2 mg/kg, i.p.), a β-adrenergic antagonist, did not block the antidepressant-like effect of SePB on TST, indicating that noradrenergic receptors are not involved in this effect. Additionally, the coadministration of SePB and bupropion (a noradrenaline/dopamine reuptake inhibitor) at subeffective doses (0.1 and 3 mg/kg, respectively) produced antidepressant-like effects. SePB also demonstrated good oral bioavailability and low toxicity in computational absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses. These findings suggest that SePB has potential as a new antidepressant drug candidate with a particular focus on the dopaminergic system.
Collapse
Affiliation(s)
- Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Kauane Nayara Bahr Ledebuhr
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS 97900-000, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Cerro Largo, RS 97900-000, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| |
Collapse
|
3
|
Chen S, Fan C, Xu Z, Pei M, Wang J, Zhang J, Zhang Y, Li J, Lu J, Peng C, Wei X. Mechanochemical synthesis of organoselenium compounds. Nat Commun 2024; 15:769. [PMID: 38278789 PMCID: PMC10817960 DOI: 10.1038/s41467-024-44891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
We disclose herein a strategy for the rapid synthesis of versatile organoselenium compounds under mild conditions. In this work, magnesium-based selenium nucleophiles are formed in situ from easily available organic halides, magnesium metal, and elemental selenium via mechanical stimulation. This process occurs under liquid-assisted grinding (LAG) conditions, requires no complicated pre-activation procedures, and operates broadly across a diverse range of aryl, heteroaryl, and alkyl substrates. In this work, symmetrical diselenides are efficiently obtained after work-up in the air, while one-pot nucleophilic addition reactions with various electrophiles allow the comprehensive synthesis of unsymmetrical monoselenides with high functional group tolerance. Notably, the method is applied to regioselective selenylation reactions of diiodoarenes and polyaromatic aryl halides that are difficult to operate via solution approaches. Besides selenium, elemental sulfur and tellurium are also competent in this process, which showcases the potential of the methodology for the facile synthesis of organochalcogen compounds.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Chunying Fan
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Mengyao Pei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiemin Wang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Jiye Zhang
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Yanta, China
| | - Jiyu Li
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Junliang Lu
- Xi'an Aisiyi Health Industry Co., Ltd, Xi'an, 710075, China
| | - Cheng Peng
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
4
|
Anghinoni JM, Birmann PT, da Rocha MJ, Gomes CS, Davies MJ, Brüning CA, Savegnago L, Lenardão EJ. Recent Advances in the Synthesis and Antioxidant Activity of Low Molecular Mass Organoselenium Molecules. Molecules 2023; 28:7349. [PMID: 37959771 PMCID: PMC10649092 DOI: 10.3390/molecules28217349] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.
Collapse
Affiliation(s)
- João M. Anghinoni
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Paloma T. Birmann
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Marcia J. da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Caroline S. Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Building 12.6, Blegdamsvej 3, 2200 Copenhagen, Denmark;
| | - César A. Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Eder J. Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| |
Collapse
|
5
|
da Rocha MJ, Pires CS, Presa MH, Besckow EM, Nunes GD, Gomes CS, Penteado F, Lenardão EJ, Bortolatto CF, Brüning CA. Involvement of the serotonergic system in the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine in mice. Psychopharmacology (Berl) 2023; 240:373-389. [PMID: 36645465 DOI: 10.1007/s00213-023-06313-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Depression is a mental disorder that affects approximately 280 million people worldwide. In the search for new treatments for mood disorders, compounds containing selenium and indolizine derivatives show promising results. OBJECTIVES AND METHODS To evaluate the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) (0.5-50 mg/kg, intragastric-i.g.) on the tail suspension test (TST) and the forced swim test (FST) in adult male Swiss mice and to elucidate the role of the serotonergic system in this effect through pharmacological and in silico approaches, as well to evaluate acute oral toxicity at a high dose (300 mg/kg). RESULTS MeSeI administered 30 min before the FST and the TST reduced immobility time at doses from 1 mg/kg and at 50 mg/kg and increased the latency time for the first episode of immobility, demonstrating an antidepressant-like effect. In the open field test (OFT), MeSeI did not change the locomotor activity. The antidepressant-like effect of MeSeI (50 mg/kg, i.g.) was prevented by the pre-treatment with p-chlorophenylalanine (p-CPA), a selective tryptophan hydroxylase inhibitor (100 mg/kg, intraperitoneally-i.p. for 4 days), with ketanserin, a 5-HT2A/2C receptor antagonist (1 mg/kg, i.p.), and with GR113808, a 5-HT4 receptor antagonist (0.1 mg/kg, i.p.), but not with WAY100635, a selective 5-HT1A receptor antagonist (0.1 mg/kg, subcutaneous-s.c.) and ondansetron, a 5-HT3 receptor antagonist (1 mg/kg, i.p.). MeSeI showed a binding affinity with 5-HT2A, 5 -HT2C, and 5-HT4 receptors by molecular docking. MeSeI (300 mg/kg, i.g.) demonstrated low potential to cause acute toxicity in adult female Swiss mice. CONCLUSION In summary, MeSeI exhibits an antidepressant-like effect mediated by the serotonergic system and could be considered for the development of new treatment strategies for depression.
Collapse
Affiliation(s)
- Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Gustavo D'Avila Nunes
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Caroline Signorini Gomes
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Filipe Penteado
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Eder João Lenardão
- Clean Organic Synthesis Laboratory (LASOL), Postgraduate Program in Chemistry (PPGQ), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Postgraduate Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão Do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
6
|
Phytochemistry, Pharmacology and Molecular Mechanisms of Herbal Bioactive Compounds for Sickness Behaviour. Metabolites 2022; 12:metabo12121215. [PMID: 36557252 PMCID: PMC9782141 DOI: 10.3390/metabo12121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
The host's response to acute infections or tissue injury is a sophisticated and coordinated adaptive modification called sickness behaviour. Many herbs have been studied for their ability to protect animals against experimentally induced sickness behaviour. However, there is a lack of knowledge and experimental evidence on the use of herbal bioactive compounds (HBACs) in the management of sick behaviour. The goal of this review is to provide a concise summary of the protective benefits and putative mechanisms of action of phytochemicals on the reduction of lipopolysaccharide (LPS)-induced sickness behaviour. Relevant studies were gathered from the search engines Scopus, ScienceDirect, PubMed, Google Scholar, and other scientific databases (between 2000 and to date). The keywords used for the search included "Lipopolysaccharide" OR "LPS" OR "Sickness behaviour" OR "Sickness" AND "Bioactive compounds" OR "Herbal medicine" OR "Herbal drug" OR "Natural products" OR "Isolated compounds". A total of 41 published articles that represented data on the effect of HBACs in LPS-induced sickness behaviour were reviewed and summarised systemically. There were 33 studies that were conducted in mice and 8 studies in rats. A total of 34 HBACs have had their effects against LPS-induced changes in behaviour and biochemistry investigated. In this review, we examined 34 herbal bioactive components that have been tested in animal models to see if they can fight LPS-induced sickness behaviour. Future research should concentrate on the efficacy, safety, and dosage needed to protect against illness behaviour in humans, because there is a critical shortage of data in this area.
Collapse
|