1
|
Kuang L, Pang Y, Fang Q. TMEM101 expression and its impact on immune cell infiltration and prognosis in hepatocellular carcinoma. Sci Rep 2024; 14:31847. [PMID: 39738479 PMCID: PMC11686260 DOI: 10.1038/s41598-024-83174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer caused by inflammation, which affects the immune response and treatment outcomes. Finding new immune-related targets could improve HCC immunotherapy. New research suggests that TMEM family proteins can act as either tumor suppressors or oncogenes, but the role of TMEM101 in HCC development is unclear. This study conducted an analysis of TMEM101 mRNA expression and its correlation with clinical outcomes in HCC patients using RNA sequencing data from various open databases. Additionally, differences in TMEM101 expression in HCC cell lines and HCC tissue microarrays were examined using RT-qPCR, western blotting, and in situ hybridization staining. The findings presented herein offer initial evidence indicating a significant upregulation of TMEM101 mRNA expression in HCC, which is linked to a poorer prognosis. Furthermore, TMEM101 expression was found to be positively associated with the histological grade and clinical stage of HCC patients. Moreover, a notable reduction in promoter methylation of TMEM101 was observed in HCC patients. Cox regression analysis indicated that TMEM101 was an independent prognostic factor for overall survival (OS) in HCC patients. A nomogram incorporating TMEM101 and tumor stage was constructed and assessed. Comparative analysis with four established HCC diagnostic biomarkers (AFP, EFNA3, MDK, and SMYD5) using ROC curve and time-dependent ROC curves demonstrated the diagnostic potential of TMEM101 in HCC. Gene set enrichment analysis (GSEA) revealed a correlation between TMEM101 and the cell cycle, DNA replication, and repair signaling pathways, which were differentially enriched in the TMEM101 high expression phenotype. The findings from CIBERSORT analysis suggest that TMEM101's pro-tumor effect may be due to decreasing the number of anti-tumor immune cells (M1 macrophages and resting memory CD4+ T cells) and promoting M0 macrophage infiltration in the tumor microenvironment (TME). Overall, our study indicates that TMEM101 could serve as a promising diagnostic and prognostic biomarker for HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/metabolism
- Prognosis
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Male
- Female
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
- Middle Aged
- Cell Line, Tumor
- DNA Methylation
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Promoter Regions, Genetic/genetics
Collapse
Affiliation(s)
- Lingyun Kuang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Yilin Pang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Quangang Fang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Wu TY, Chen CC, Lin JY. Anti-inflammatory in vitro activities of eleven selected caffeic acid derivatives based on a combination of pro-/anti-inflammatory cytokine secretions and principal component analysis - A comprehensive evaluation. Food Chem 2024; 458:140201. [PMID: 38943957 DOI: 10.1016/j.foodchem.2024.140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Eleven compounds including caffeic acid (CA), 4 kinds of caffeoylquinic acid (CQA) and 6 kinds of dicaffeoylquinic acid (DCQA), were selected to evaluate the anti-inflammatory effectiveness using mouse primary peritoneal macrophages in the absence or presence of lipopolysaccharide (LPS). The optimal non-cytotoxic doses of each individual compound were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Pro-inflammatory (TNF-α, IL-1β, IL-6) and anti-inflammatory (IL-10) cytokines secreted by treated macrophages were analyzed using the enzyme-linked immunosorbent assay. Cytokine secretion profiles of each individual test sample at optimal non-cytotoxic doses were further analyzed using Principal Component Analysis (PCA). The results showed that CA and all selected CQAs exhibited lower cytotoxicity (IC50: >50 μmol/l). Both CA and 5-CQA were found to have the most significant contributions for inhibiting pro-inflammatory cytokines, but increasing anti-inflammatory cytokine secretions, evidencing that CA at 10 μmol/l and 5-CQA at 25 μmol/l can be qualified as potent anti-inflammatory agents for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan, ROC
| | - Chou-Chen Chen
- Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407219, Taiwan, ROC..
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan, ROC..
| |
Collapse
|
3
|
Zhu B, Cheng L, Huang B, Liu R, Ren B. Central role of hypoxia-inducible factor-1α in metabolic reprogramming of cancer cells: A review. Medicine (Baltimore) 2024; 103:e40273. [PMID: 39496001 PMCID: PMC11537650 DOI: 10.1097/md.0000000000040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Metabolic reprogramming is one of the characteristics of tumor cell metabolism. In tumor cells, there are multiple metabolic enzymes and membrane proteins to regulate metabolic reprogramming, and hypoxia inducible factor-1α (HIF-1α) can be regulated in transcription, translation, posttranslational modification and other aspects through multiple pathways, and HIF-1α affects multiple metabolic enzymes and membrane proteins during metabolic reprogramming, thus playing a central role in the metabolic reprogramming process, and thus has some implications for tumor therapy and understanding chemotherapy drug resistance. HIF-1α affects a number of metabolic enzymes and membrane proteins in the metabolic reprogramming process, thus playing a central role in the metabolic reprogramming process, which has certain significance for the treatment of tumors and the understanding of chemotherapeutic drug resistance. In this paper, we review the central role of HIF-1α in metabolic reprogramming, chemotherapeutic agents targeting HIF-1α, and chemotherapeutic drug resistance.
Collapse
Affiliation(s)
- Bing Zhu
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| | - Lichao Cheng
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| | - Baosu Huang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| | - Runzhi Liu
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| | - Bin Ren
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| |
Collapse
|
4
|
Chunlian Z, Qi W, Rui Z. The Role of Pyruvate Kinase M2 Posttranslational Modification in the Occurrence and Development of Hepatocellular Carcinoma. Cell Biochem Funct 2024; 42:e4125. [PMID: 39327771 DOI: 10.1002/cbf.4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadly malignant tumors that directly leads to the death of nearly one million people worldwide every year, causing a serious burden on society. In the presence of sufficient oxygen, HCC cells rapidly generate energy through aerobic glycolysis, which promotes tumor cell proliferation, immune evasion, metastasis, angiogenesis, and drug resistance. Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. In recent years, studies have found that PKM2 not only exerts pyruvate kinase activity in the process of glucose metabolism, but also exerts protein kinase activity in non-metabolic pathways to affect tumor cell processes, and its activity is flexibly regulated by various posttranslational modifications such as acetylation, phosphorylation, lactylation, ubiquitination, SUMOylation, and so forth. This review summarizes the role of posttranslational modifications of PKM2-related sites in the development of HCC.
Collapse
Affiliation(s)
- Zhao Chunlian
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Wan Qi
- Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhao Rui
- Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Wang W, Xu X, Zhao L, Ye K, Wang S, Lin C. 3,5-diCQA suppresses colorectal cancer cell growth through ROS/AMPK/mTOR mediated mitochondrial dysfunction and ferroptosis. Cell Cycle 2023; 22:1951-1968. [PMID: 37902223 PMCID: PMC10761099 DOI: 10.1080/15384101.2023.2247248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 10/31/2023] Open
Abstract
3,5-diCQA has been shown to have anti-tumor effect by decreasing cancer cell growth. However, the molecular mechanism by which 3,5-diCQA impacts colorectal cancer (CRC) cells is unknown. This study discovered that 3,5-diCQA had a suppressive effect on CRC cells, mainly in the inhibition of proliferation, migration, and the enhancement of apoptosis in HCT116 and SW480 cells. Additionally, 3,5-diCQA was found to cause cell cycle arrest in CRC cells. Meanwhile, we found that 3,5-diCQA activates the AMPK pathway through the generation of ROS, mediates mitochondrial damage, and reduces mitochondrial aerobic glycolysis and oxidative phosphorylation levels. 3,5-diCQA promoted oxidative damage and ferroptosis in CRC cells. Hence, we added ROS inhibitor NAC and found that the NAC reversed the effects of 3,5-diCQA on proliferation, apoptosis, ROS generation, and ferroptosis in CRC cells. Moreover, 3,5-diCQA was also shown to suppress the development of CRC tumor in a tumor-forming model of nude mice. In conclusion, we found that 3,5-diCQA enhances the oxidative damage and ferroptosis while reducing proliferation and migration of CRC cells, depending on mitochondrial dysfunction caused by the ROS/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Weibing Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Xu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Long Zhao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Ye
- Department of Anorectal surgery, Tonglu County First People’s Hospital, Hangzhou, China
| | - Saisai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhao Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Qu H, Liu J, Zhang D, Xie R, Wang L, Hong J. Glycolysis in Chronic Liver Diseases: Mechanistic Insights and Therapeutic Opportunities. Cells 2023; 12:1930. [PMID: 37566009 PMCID: PMC10417805 DOI: 10.3390/cells12151930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic liver diseases (CLDs) cover a spectrum of liver diseases, ranging from nonalcoholic fatty liver disease to liver cancer, representing a growing epidemic worldwide with high unmet medical needs. Glycolysis is a conservative and rigorous process that converts glucose into pyruvate and sustains cells with the energy and intermediate products required for diverse biological activities. However, abnormalities in glycolytic flux during CLD development accelerate the disease progression. Aerobic glycolysis is a hallmark of liver cancer and is responsible for a broad range of oncogenic functions including proliferation, invasion, metastasis, angiogenesis, immune escape, and drug resistance. Recently, the non-neoplastic role of aerobic glycolysis in immune activation and inflammatory disorders, especially CLD, has attracted increasing attention. Several key mediators of aerobic glycolysis, including HIF-1α and pyruvate kinase M2 (PKM2), are upregulated during steatohepatitis and liver fibrosis. The pharmacological inhibition or ablation of PKM2 effectively attenuates hepatic inflammation and CLD progression. In this review, we particularly focused on the glycolytic and non-glycolytic roles of PKM2 in the progression of CLD, highlighting the translational potential of a glycolysis-centric therapeutic approach in combating CLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510632, China; (H.Q.)
| |
Collapse
|
7
|
Guo X, Li R, Cui J, Hu C, Yu H, Ren L, Cheng Y, Jiang J, Ding X, Wang L. Induction of RIPK3/MLKL-mediated necroptosis by Erigeron breviscapus injection exhibits potent antitumor effect. Front Pharmacol 2023; 14:1219362. [PMID: 37397499 PMCID: PMC10311648 DOI: 10.3389/fphar.2023.1219362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of tumor-related deaths worldwide. Resistance of tumor cells to drug-induced apoptosis highlights the need for safe and effective antitumor alternatives. Erigeron breviscapus (Dengzhanxixin in China) injection (EBI), extracted from the natural herb Erigeron breviscapus (Vant.) Hand.-Mazz (EHM), has been widely used in clinical practice for cardiovascular diseases. Recent studies have suggested that EBI's main active ingredients exhibit potential antitumor effects. This study aims to explore the anti-CRC effect of EBI and elucidate the underlying mechanism. The anti-CRC effect of EBI was evaluated in vitro using CCK-8, flow cytometry, and transwell analysis, and in vivo through a xenograft mice model. RNA sequencing was utilized to compare the differentially expressed genes, and the proposed mechanism was verified through in vitro and in vivo experiments. Our study demonstrates that EBI significantly inhibits the proliferation of three human CRC cell lines and effectively suppresses the migration and invasion of SW620 cells. Moreover, in the SW620 xenograft mice model, EBI markedly retards tumor growth and lung metastasis. RNA-seq analysis revealed that EBI might exert antitumor effects by inducing necroptosis of tumor cells. Additionally, EBI activates the RIPK3/MLKL signaling pathway, a classical pathway of necroptosis and greatly promotes the generation of intracellular ROS. Furthermore, the antitumor effect of EBI on SW620 is significantly alleviated after the pretreatment of GW806742X, the MLKL inhibitor. Our findings suggest that EBI is a safe and effective inducer of necroptosis for CRC treatment. Notably, necroptosis is a non-apoptotic programmed cell death pathway that can effectively circumvent resistance to apoptosis, which provides a novel approach for overcoming tumor drug resistance.
Collapse
Affiliation(s)
- Xiuping Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chujuan Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yangyang Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Grishchenko OV, Grigorchuk VP, Tchernoded GK, Koren OG, Bulgakov VP. Callus Culture of Scorzonera radiata as a New, Highly Productive and Stable Source of Caffeoylquinic Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227989. [PMID: 36432088 PMCID: PMC9694156 DOI: 10.3390/molecules27227989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
During our ongoing efforts to investigate biotechnological sources of caffeoylquinic acid (CQA) metabolites, we discovered the plant Scorzonera radiata Fisch. (Asteraceae), which is able to produce callus cultures with high yield and extremely high stability. An actively growing callus line, designated as Sr-L1, retained the ability to produce 11 CQAs during long-term cultivation (more than 20 years). A total of 29 polyphenolic compounds were identified in the leaves and Sr-L1 callus culture of S. radiata, including CQAs, lignol derivatives, flavonoids, and dihydrostilbenes. The composition of CQAs in the Sr-L1 culture was identical to that in the S. radiata leaves. Sr-L1 calli did not produce flavonoids and dihydrostilbenes, but produced lignol derivatives, which were absent in leaves. The HPLC-UV-HRMS determination showed the presence of monoacyl derivatives of CQAs such as 5-CQA, 4-CQA, cis-5-CQA, and 5-O-p-coumaroylquinic acid in the Sr-L1 culture. Among diacyl derivatives, 3,4-diCQA, 3,5-diCQA, cis-3,5-diCQA, 4,5-diCQA, 3-O-p-coumaroyl-5-O-CQA, and 3-O-caffeoyl-5-O-p-coumaroylquinic acid were found. The content of 5-CQA reached 7.54 mg/g dry weight and the content of 3,5-diCQA was as high as 18.52 mg/g dry weight. 3,5-diCQA has been reported to be of high nutritional and pharmacological value, as it alleviates inflammatory pain, reverses memory impairment by preventing neuronal apoptosis, and counteracts excessive adipose tissue expansion, serving as an attractive treatment option for obesity. The high content of 3,5-diCQA and the exceptional stability of biosynthesis make callus cultures of S. radiata a promising source for the development of drugs and nutraceuticals.
Collapse
|
9
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [PMID: 36457492 PMCID: PMC9705776 DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 06/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospfigital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|