1
|
Wang J, Gao S, Cui Y, Liu XZ, Chen XX, Hang CH, Li W. Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. Antioxid Redox Signal 2025. [PMID: 40170638 DOI: 10.1089/ars.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Yue Cui
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Neurosurgical Institute, Nanjing University, Nanjing, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Chang J, Liu D, Xiao Y, Tan B, Deng J, Mei Z, Liao J. Disulfidptosis: a new target for central nervous system disease therapy. Front Neurosci 2025; 19:1514253. [PMID: 40109666 PMCID: PMC11920580 DOI: 10.3389/fnins.2025.1514253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025] Open
Abstract
Disulfidptosis is a pathologic process that occurs under conditions of NADPH deficiency and excess disulfide bonds in cells that express high levels of SLC7A11. This process is caused by glucose deprivation-induced disulfide stress and was first described by cancer researchers. Oxidative stress is a hypothesized mechanism underlying diseases of the central nervous system (CNS), and disulfide stress is a specific type of oxidative stress. Proteins linked to disulfidptosis and metabolic pathways involved in disulfidptosis are significantly associated with diseases of the CNS (neurodegenerative disease, neurogliomas and ischemic stroke). However, the specific mechanism responsible for this correlation remains unknown. This review provides a comprehensive overview of the current knowledge regarding the origin elements, genetic factors, and signaling proteins involved in the pathogenesis of disulfidptosis. It demonstrates that the disruption of thiometabolism and disulfide stress play critical roles in CNS diseases, which are associated with the potential role of disulfidptosis. We also summarize disulfidptosis-related drugs and highlight potential therapeutic strategies for treating CNS diseases. Additionally, this paper suggests a testable hypothesis that might be a promising target for treating CNS diseases.
Collapse
Affiliation(s)
- Jing Chang
- College of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Danhong Liu
- Institute of Clinical Pharmacology of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Chinese Medicine), Changsha, China
| | - Yuqi Xiao
- College of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Boyao Tan
- College of Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jun Deng
- Department of Neurology, Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Vascular Biology Laboratory, Medical College, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
4
|
Yang X, Wang J, Jia X, Yang Y, Fang Y, Ying X, Li H, Zhang M, Wei J, Pan Y. Microglial polarization in Alzheimer's disease: Mechanisms, implications, and therapeutic opportunities. J Alzheimers Dis 2025:13872877241313223. [PMID: 39894910 DOI: 10.1177/13872877241313223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β plaques, neurofibrillary tangles, and chronic neuroinflammation. Microglial cells, the resident immune cells in the central nervous system, play a crucial role in the pathogenesis of AD. Microglia can undergo polarization, shifting between pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes in response to different stimuli. Dysregulation of microglial polarization towards the pro-inflammatory phenotype leads to the release of inflammatory cytokines, oxidative stress, and synaptic dysfunction. These processes contribute to neuronal damage and cognitive decline in AD. However, several challenges remain in this field. The complex molecular mechanisms governing microglial polarization in AD need to be further elucidated. In this review, we discuss the mechanisms underlying microglial polarization in AD and its implications in disease progression.
Collapse
Affiliation(s)
- Xinmao Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Wang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaotao Jia
- Department of Neurology, The Affifiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, PR China
| | - Yaqian Yang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Fang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaoping Ying
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hong Li
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meiqian Zhang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wei
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanfang Pan
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
5
|
Tawbeh A, Gondcaille C, Saih FE, Raas Q, Loichot D, Hamon Y, Keime C, Benani A, Di Cara F, Cherkaoui-Malki M, Andreoletti P, Savary S. Impaired peroxisomal beta-oxidation in microglia triggers oxidative stress and impacts neurons and oligodendrocytes. Front Mol Neurosci 2025; 18:1542938. [PMID: 39958993 PMCID: PMC11826809 DOI: 10.3389/fnmol.2025.1542938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Microglia, the immune cells of the central nervous system, activate neuroinflammatory pathways in response to homeostatic disturbances, a process implicated in the pathogenesis of various neurodegenerative diseases. Emerging evidence identifies abnormal microglial activation as a causal factor at the onset of peroxisomal leukodystrophies, including X-linked adrenoleukodystrophy (X-ALD). This study investigates how primary peroxisomal deficiencies influence oxidative properties of microglia and examines the subsequent impact on neurons and oligodendrocytes. Using BV-2 microglial cells lacking ABCD1, ABCD2, or ACOX1, peroxisomal proteins that play key roles in the very-long-chain fatty acid beta-oxidation, we analyzed their response under basal condition and after stimulation by lipopolysaccharide (LPS). Transcriptomic analysis of the mutant microglial cells revealed numerous differentially expressed genes, particularly in redox-related pathways following LPS exposure. These changes are consistent with the increased production of reactive oxygen species (ROS) and nitric oxide (NO). Conditioned media (CM) from the mutant cells were then applied to cultures of neuron and oligodendrocyte cell lines. Exposure to CM from LPS-stimulated mutant microglial cells significantly increased apoptosis in both cell types. Furthermore, treated neurons exhibited a reduction in cell complexity and an increased ability to secrete neuropeptides. These findings demonstrate that peroxisomal impairments in microglia exacerbate inflammatory response and ROS/NO production, affecting the survival of neurons and oligodendrocytes, as well as neuronal morphology and function. This dysfunction might contribute to the early neurodegenerative events in X-ALD by triggering and sustaining neuroinflammatory cascades. Therapeutic strategies that target microglial activation and secretion profiles could hold promise in managing peroxisomal disorders such as X-ALD.
Collapse
Affiliation(s)
- Ali Tawbeh
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Catherine Gondcaille
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Fatima-Ezzahra Saih
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Damien Loichot
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR, Inserm, University of Strasbourg, Strasbourg, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Mustapha Cherkaoui-Malki
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Pierre Andreoletti
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Stéphane Savary
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| |
Collapse
|
6
|
He M, Wang T, Tang C, Xiao M, Pu X, Qi J, Li Y, Li X. Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of Ophiocordyceps sinensis. J Fungi (Basel) 2025; 11:51. [PMID: 39852470 PMCID: PMC11766798 DOI: 10.3390/jof11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Ophiocordyceps sinensis is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of O. sinensis indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.74 ± 0.12 μmol Trolox/g), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radical scavenging rate (60.21 ± 0.51%), and the hydroxyl free radical scavenging rate (91.83 ± 0.68%) reached a maximum on day 30. Using LC-MS/MS to measure the metabolites on D24, D30, and D36, we found that the majority of the differential accumulated metabolites (DAMs) primarily accumulate in lipids, organoheterocyclic compounds, and organic acids and their derivatives. Notably, the DAMs exhibiting high peaks include acetylcarnitine, glutathione, linoleic acid, and L-propionylcarnitine, among others. The transcriptome analysis results indicate that the differentially expressed genes (DEGs) exhibiting high expression peaks on D30 primarily included lnaA, af470, and ZEB1; high expression peaks on D24 comprised SPBC29A3.09c and YBT1; high expression peaks on D36 included dtxS1, PA1538, and katG. The combined analysis revealed significant and extremely significant positive and negative correlations between all the DAMs and DEGs. The primary enriched pathways (p < 0.05) included glutathione metabolism, tryptophan metabolism, carbon metabolism, biosynthesis of secondary metabolites, and phenylalanine metabolism. The metabolic pathway map revealed that the DAMs and DEGs influencing the antioxidant activity of O. sinensis were significantly up-regulated on D30 but down-regulated on D36. The correlation analysis suggests that an increase in the content of DEGs and DAMs promotes an increase in the levels of enzyme and non-enzyme substances, ultimately enhancing the antioxidant capacity of O. sinensis. These findings serve as a reference of how DAMs and DEGs affect the antioxidant activity of O. sinensis. This may contribute to the enhanced development and application of O. sinensis.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiaojian Pu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Jianzhao Qi
- Center of Edible Fungi, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| |
Collapse
|
7
|
Wang G, Zhuang W, Zhou Y, Wang X, Li Z, Liu C, Li W, He M, Lv E. 17β-estradiol alleviated ferroptotic neuroinflammation by suppressing ATF4 in mouse model of Parkinson's disease. Cell Death Discov 2024; 10:507. [PMID: 39702495 DOI: 10.1038/s41420-024-02273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Neuroinflammation induced by activation of microglial is a vital contributor to progression of Parkinson's disease (PD), emerging evidences suggested that ferroptosis played a pivotal role in microglial activation and subsequent dopaminergic neuron loss. Nevertheless, the fundamental pathogenesis of that ferroptosis contributes to PD is not yet sufficiently understood. Based on GEO dataset, ferroptosis related genes were found to be enriched in PD patients and MPTP mouse model of PD, among them, ATF4 was found to be dramatically differentially expressed. In our study, ectopic expression of ATF4 augmented MPP+-induced cytotoxic and activation of BV2 cells with upregulated intracellular L-ROS, TLR4 and pNF-κB. Ectopic ATF4 effectively promoted transformation of microglial into M1 pro-inflammatory phenotype. 17β-estradiol (E2) attenuated expression of ATF4 in BV2 cells, silence of ATF4 enhanced protective effect of E2 on MPP+-treated BV2 cells. In MPTP-induced PD mouse model, administration of E2 further abated expression of ATF4 and inhibited expressions of pro-inflammatory cytokines and activation of TLR4/NF-κB pathway. Overall, E2 effectively counteracted TLR4/NF-κB signaling pathway by restraining ATF4 and inhibited inflammatory response triggered by ferroptosis, ultimately exerted anti-PD effects.
Collapse
Affiliation(s)
- Guoming Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Wenxin Zhuang
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yijun Zhou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Xu Wang
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province, China
| | - Zhenfeng Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Chuanliang Liu
- Department of Geriatrics, Weifang People's Hospital, Weifang, China.
| | - Wentong Li
- Department of Pathology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Maotao He
- Department of Pathology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China.
| | - E Lv
- Department of Histoembryology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong Province, China.
| |
Collapse
|
8
|
Shim HB, Lee H, Cho HY, Jo YH, Tarrago L, Kim H, Gladyshev VN, Lee BC. Development and Optimization of a Redox Enzyme-Based Fluorescence Biosensor for the Identification of MsrB1 Inhibitors. Antioxidants (Basel) 2024; 13:1348. [PMID: 39594490 PMCID: PMC11591284 DOI: 10.3390/antiox13111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain. This protein-based biosensor, named RIYsense, efficiently measures protein methionine sulfoxide reduction by ratiometric fluorescence increase. We used it for high-throughput screening of potential MsrB1 inhibitors among 6868 compounds. A total of 192 compounds were selected based on their ability to reduce relative fluorescence intensity by more than 50% compared to the control. Then, we used molecular docking simulations of the compound on MsrB1, affinity assays, and MsrB1 activity measurement to identify compounds with reliable and strong inhibitory effects. Two compounds were selected as MsrB1 inhibitors: 4-[5-(4-ethylphenyl)-3-(4-hydroxyphenyl)-3,4-dihydropyrazol-2-yl]benzenesulfonamide and 6-chloro-10-(4-ethylphenyl)pyrimido[4,5-b]quinoline-2,4-dione. They are heterocyclic, polyaromatic compounds with a substituted phenyl moiety interacting with the MsrB1 active site, as revealed by docking simulation. These compounds were found to decrease the expression of anti-inflammatory cytokines such as IL-10 and IL-1rn, leading to auricular skin swelling and increased thickness in an ear edema model, effectively mimicking the effects observed in MsrB1 knockout mice. In summary, using a novel redox protein-based fluorescence biosensor, we identified potential MsrB1 inhibitors that can regulate the inflammatory response, particularly by influencing the expression of anti-inflammatory cytokines. These compounds are promising tools for understanding MsrB1's role during inflammation and eventually controlling inflammation in therapeutic approaches.
Collapse
Affiliation(s)
- Hyun Bo Shim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Hyunjeong Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
- College of Engineering, Institute of Green Manufacturing Research Center, Korea University, Seoul 02841, Republic of Korea
- GERONMED, Co., Ltd., Hoegi-ro 117-3, Seoulbiohub, Research Building, 5F, 504, Seoul 02455, Republic of Korea
| | - Hwa Yeon Cho
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Young Ho Jo
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Lionel Tarrago
- French National Institute for Agriculture, Food, and Environment (INRAE), Aix Marseille University, Biodiversité et Biotechnologie Fongiques (BBF), 13385 Marseille, France;
| | - Hyunggee Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (H.B.S.); (H.L.); (H.Y.C.); (Y.H.J.); (H.K.)
- GERONMED, Co., Ltd., Hoegi-ro 117-3, Seoulbiohub, Research Building, 5F, 504, Seoul 02455, Republic of Korea
| |
Collapse
|
9
|
Sarkar C, Lipinski MM. Role and Function of Peroxisomes in Neuroinflammation. Cells 2024; 13:1655. [PMID: 39404418 PMCID: PMC11476013 DOI: 10.3390/cells13191655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Peroxisomes are organelles involved in many cellular metabolic functions, including the degradation of very-long-chain fatty acids (VLCFAs; C ≥ 22), the initiation of ether-phospholipid synthesis, and the metabolism of reactive oxygen species. All of these processes are essential for the maintenance of cellular lipid and redox homeostasis, and their perturbation can trigger inflammatory response in immune cells, including in the central nervous system (CNS) resident microglia and astrocytes. Consistently, peroxisomal disorders, a group of congenital diseases caused by a block in peroxisomal biogenesis or the impairment of one of the peroxisomal enzymes, are associated with neuroinflammation. Peroxisomal function is also dysregulated in many neurodegenerative diseases and during brain aging, both of which are associated with neuroinflammation. This suggests that deciphering the role of peroxisomes in neuroinflammation may be important for understanding both congenital and age-related brain dysfunction. In this review, we discuss the current advances in understanding the role and function of peroxisomes in neuroinflammation.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marta M. Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
10
|
Cao J, Su Z, Zhang Y, Chen Z, Li J, Cai Y, Chang Y, Lei M, He Q, Li W, Liao X, Zhang S, Hong A, Chen X. Turning sublimed sulfur and bFGF into a nanocomposite to accelerate wound healing via co-activate FGFR and Hippo signaling pathway. Mater Today Bio 2024; 26:101104. [PMID: 38952539 PMCID: PMC11216016 DOI: 10.1016/j.mtbio.2024.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhiqi Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiming Chang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghua Lei
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qianyi He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Weicai Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - An Hong
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xiaojia Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| |
Collapse
|
11
|
Tang C, Fan Y, Wang T, Wang J, Xiao M, He M, Chang X, Li Y, Li X. Metabolomic Profiling of Floccularia luteovirens from Different Geographical Regions Proposes a Novel Perspective on Their Antioxidative Activities. Antioxidants (Basel) 2024; 13:620. [PMID: 38790725 PMCID: PMC11118160 DOI: 10.3390/antiox13050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Floccularia luteovirens, an endemic resource of the Tibetan Plateau, possesses significant medicinal and ecological values. However, the understanding of antioxidant capacity and metabolic profiling of F. luteovirens from diverse regions remains elusive due to limited resources. Therefore, to comprehensively comprehend the antioxidant capacity and metabolite diversity of F. luteovirens, we conducted a rounded analysis of its antioxidant capacity from three distinct regions using both untargeted and targeted metabolomics. Determination of antioxidant indices, such as ferric ion-reducing antioxidant power (FRAP), total phenolic content (TPC), and flavonoid content (FC), revealed the robust antioxidant capacity of F. luteovirens. QL F. luteovirens (QLFL) exhibited no significant difference compared to ZD F. luteovirens (ZDFL); however, both were significantly distinct from XH F. luteovirens (XHFL) across multiple indices. Furthermore, a positive correlation was observed between FRAP and flavonoid content. A total of 5782 metabolites were identified and chemically classified. Metabolites of F. luteovirens varied significantly at different regions and eight key differential metabolites were screened. Phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and cyanoamino acid metabolism were the main different regulatory pathways. Consequently, the disparities in the antioxidant activity of F. luteovirens may primarily be ascribed to the biosynthesis and metabolism of phenylalanine, while vanillic acid could potentially serve as a pivotal metabolite influencing the antioxidative capacity of F. luteovirens by targeted metabolomics. These findings enhance our understanding of the composition of F. luteovirens and provide valuable resources for its comprehensive utilization and targeted development.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Yuejun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Jie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Xiyun Chang
- Qinghai Institute of Health Sciences, Xining 810016, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (Y.F.); (T.W.); (M.X.); (M.H.)
| |
Collapse
|
12
|
Li W, Wan P, Qiao J, Liu Y, Peng Q, Zhang Z, Shu X, Xia Y, Sun B. Current and further outlook on the protective potential of Antrodia camphorata against neurological disorders. Front Pharmacol 2024; 15:1372110. [PMID: 38694913 PMCID: PMC11061445 DOI: 10.3389/fphar.2024.1372110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke are increasingly becoming a global burden as society ages. It is well-known that degeneration and loss of neurons are the fundamental underlying processes, but there are still no effective therapies for these neurological diseases. In recent years, plenty of studies have focused on the pharmacology and feasibility of natural products as new strategies for the development of drugs that target neurological disorders. Antrodia camphorata has become one of the most promising candidates, and the crude extracts and some active metabolites of it have been reported to play various pharmacological activities to alleviate neurological symptoms at cellular and molecular levels. This review highlights the current evidence of Antrodia camphorata against neurological disorders, including safety evaluation, metabolism, blood-brain barrier penetration, neuroprotective activities, and the potential on regulating the gut-microbiome-brain axis. Furthermore, potential strategies to resolve problematic issues identified in previous studies are also discussed. We aim to provide an overview for the ongoing development and utilization of Antrodia camphorata in cerebral neuropathology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
13
|
Oria RS, Anyanwu GE, Nto JN, Ikpa JO. Curcumin abrogates cobalt-induced neuroinflammation by suppressing proinflammatory cytokines release, inhibiting microgliosis and modulation of ERK/MAPK signaling pathway. J Chem Neuroanat 2024; 137:102402. [PMID: 38428651 DOI: 10.1016/j.jchemneu.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Curcumin, a bioactive polyphenol derived from turmeric, has been reported to have anti-inflammatory properties. The current study investigated the anti-inflammatory effect of curcumin in the hippocampal subfields (CA1 and CA3) after exposure to cobalt (Co) and the impact of ERK protein. Twenty-eight albino Wistar rats were divided into four groups, each with seven randomly selected rats as follows: Control (distilled water), Cobalt (Co) only (40 mg/kg), 120 mg/kg or 240 mg/kg curcumin + Co (40 mg/kg). Treatment was via oral gavage for 28 days. We performed a biochemical investigation to determine the levels of proinflammatory cytokines (TNFα and IL-1β). Furthermore, we conducted an immunohistochemical evaluation to assess the expression of IBA1 by microglial cells and the immunoexpression of ERK protein in the hippocampus. Results revealed a significant (p<0.05) elevation in the tissue level of TNFα and IL-1β, an increase in the number of IBA1-positive microglia, and upregulation of ERK protein in the hippocampal subfields of the rats after exposure to cobalt-only. Nevertheless, pretreatment with curcumin restored these parameters to levels comparable to control. In conclusion, our results showed that curcumin abrogated the Co-induced neuroinflammation by suppressing the release of proinflammatory biomarkers, reducing microgliosis, and modulating the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Rademene S Oria
- Department of Anatomy, Faculty Of Basic Medical Sciences, University of Cross River State (UNICROSS), Cross River State, Nigeria; Department Of Anatomy, Faculty Of Basic Medical Sciences, College Of Medicine, University Of Nigeria Enugu Campus,, Enugu, Nigeria.
| | - Godson E Anyanwu
- Department Of Anatomy, Faculty Of Basic Medical Sciences, College Of Medicine, University Of Nigeria Enugu Campus,, Enugu, Nigeria; Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Uganda
| | - Johnson N Nto
- Department Of Anatomy, Faculty Of Basic Medical Sciences, College Of Medicine, University Of Nigeria Enugu Campus,, Enugu, Nigeria
| | - James O Ikpa
- Department of Anatomy, Faculty Of Basic Medical Sciences, University of Cross River State (UNICROSS), Cross River State, Nigeria
| |
Collapse
|
14
|
Wang Q, Dong J, Du M, Liu X, Zhang S, Zhang D, Qin W, Xu X, Li X, Su R, Qiu L, Li B, Yuan H. Chitosan-Rapamycin Carbon Dots Alleviate Glaucomatous Retinal Injury by Inducing Autophagy to Promote M2 Microglial Polarization. Int J Nanomedicine 2024; 19:2265-2284. [PMID: 38476273 PMCID: PMC10928492 DOI: 10.2147/ijn.s440025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1β and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-β. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Mengxian Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xinna Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shiqi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Di Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wanyun Qin
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xikun Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Xianghui Li
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ruidong Su
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Leyi Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, Russia
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
15
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|