1
|
Sathoria P, Shrivastava A, Rai U, Roy B. Asprosin modulates female reproductive functions in teleosts: An in vitro study in Channa punctata. Gen Comp Endocrinol 2025; 370:114770. [PMID: 40513993 DOI: 10.1016/j.ygcen.2025.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/24/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Asprosin regulates various aspects of physiology in mammals including reproduction. It is reported to profoundly affect both male and female reproductive functions including gametogenesis and steroidogenesis. Asprosin is the cleaved product of a profibrillin protein encoded by the fbn1 gene. For the first time in non-mammalian vertebrates, our group demonstrated the ubiquitous expression of fbn1 and characterized asprosin protein in silico in teleost Channa punctata commonly known as spotted snakehead (ss). Based on the prominent expression of the fbn1 gene and the reproductive phase-dependent temporal expression of fbn1 in the ovary of C. punctata, we hypothesized the regulatory role of asprosin in female reproduction similar to that reported in mammals. In vitro studies confirmed the effect of asprosin on the oogenesis and steroidogenesis in C. punctata. Asprosin significantly enhanced the expression of genes crucial for oogenesis such as pcna and gdf9. It also increased the transcription of gonadotropin receptors and sex steroid receptor genes. In addition to this, asprosin accentuated the expression of steroidogenic markers such as star and cyp17a1 along with 17α, 20β dihydroxy-progesterone levels. We also measured the levels of the second messenger cAMP in ovaries exposed to asprosin to explore the probability of GPCRs as asprosin receptors. However, asprosin could not alter the cAMP levels indicating that, in the ovary of teleosts, receptors other than GPCRs might be involved in transducing asprosin action. Thus, the present study in elucidates the important role of asprosin in modulating the ovarian functions in C. punctata.
Collapse
Affiliation(s)
- Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | | | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, India.
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Areloegbe SE, Atuma CL, Aturamu A, Ajadi IO, Adelekan OE, Ajadi MB, Akintayo CO, Omoruyi GO, Onyekweli SO, Anifowose OF, Amusa OA, Ajayi K, Oyewole PA, Adegoke TE, Olaniyi KS. Renometabolic disorder in experimental rat model of polycystic ovarian syndrome is reversed by acetate-mediated inhibition of pyruvate dehydrogenase kinase 4. BMC Nephrol 2025; 26:234. [PMID: 40361039 PMCID: PMC12077013 DOI: 10.1186/s12882-025-04157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Chronic Kidney disorders is a global public health problem, including in women with polycystic ovarian syndrome (PCOS), and is characterized by renal fibrosis, nephrotoxicity and glomerulonephritis, which increases the possibility of renal failure and organ transplant. Pyruvate dehydrogenase kinase 4 (PDK4) has been implicated in mitochondria dysfunction, contributing to metabolic dysregulation in different organs, including kidney. Studies have shown that short chain fatty acids, particularly acetate, alleviates metabolic alterations in experimental models. Hence, the present study investigated the therapeutic potential of acetate on renometabolic disorders associated with experimental PCOS model. The study in addition elucidates the probable involvement of PDK4 in PCOS-associated renometabolic disorders. METHODS Eight-week-old nulliparous female Wistar rats were randomly allotted into four groups (n = 5). Letrozole (1 mg/kg bw) was used to induce PCOS for 3 weeks. Thereafter, acetate (200 mg/kg bw) was administered for 6 weeks, uninterruptedly. Biochemical parameters from the plasma and renal tissue, as well as histology of ovaries were performed with appropriate methods. RESULTS Experimental PCOS rats were characterized with elevated circulating testosterone and the presence of multiple ovarian cysts. In addition, rat with PCOS also manifested insulin resistance, increased plasma urea and creatinine levels, increased renal Gamma glutamyl transferase (GGT), malondialdehyde (MDA), Nuclear factor -kappa B (NF-kB), Tumor necrosis factor -alpha (TNF-a), Transforming growth factor -beta 1 (TGF-B1), caspase-6, Histone deacetylase 2 (HDAC2), while a decrease in glucose-6 phosphate dehydrogenase (G6PD), reduced glutathione (GSH), renal nitric oxide (NO) and endothelial nitric oxide synthesis (eNOS), when compared with animals in the control group. These were associated with elevated level of PDK4 in the renal tissue. However, administration of acetate ameliorates these renal/metabolic abnormalities. CONCLUSION Altogether, the results from the present study suggests that acetate ameliorates renal dysfunction in PCOS via downregulation of PDK4.
Collapse
Affiliation(s)
- Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Chukwubueze L Atuma
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Ayodeji Aturamu
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Isaac O Ajadi
- Department of Physiology, College of Health Sciences, Ladoke Akintola University of Technology, Old Oyo/Ilorin Rd, Ogbomosho, 210214, Nigeria
| | - Oluseyi E Adelekan
- Department of Obstetrics and Gynecology, General Hospital Gbagada, Lagos, Lagos State, Nigeria
| | - Mary B Ajadi
- Department of Chemical pathology, College of Health Sciences, Ladoke Akintola University of Technology, Old Oyo/Ilorin Rd, 210214, Ogbomosho, Nigeria
| | - Christopher O Akintayo
- Department of Internal Medicine, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
| | - Gloria O Omoruyi
- Department of Internal Medicine, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Nigeria
| | - Samuel O Onyekweli
- Department of Radiation Oncology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Omosola F Anifowose
- Department of Physiology, Faculty of Basic Medical Sciences, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria
| | - Oluwatobi A Amusa
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Kayode Ajayi
- Department of Human Nutrition and Dietetics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Paul A Oyewole
- Department of Surgery, Faculty of Clinical Sciences, Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria
| | - Tolulope E Adegoke
- Department of Physiology, College of Health Sciences, Lead City University, Ibadan, Oyo Sate, Nigeria
| | - Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
3
|
Yu W, Sun S, Yan Y, Zhou H, Liu Z, Fu Q. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol 2025; 16:1519925. [PMID: 39991152 PMCID: PMC11842938 DOI: 10.3389/fimmu.2025.1519925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic syndrome (Mets) is an important contributor to morbidity and mortality in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty acid (SCFA), an organismal energy donor, has recently been demonstrated in an increasing number of studies to be an important molecule in ameliorating immuno-inflammation, an important causative factor of Mets, and to improve lipid distribution, blood glucose, and body weight levels in animal models of Mets. This study reviews recent research advances on SCFA in Mets from an immune-inflammatory perspective, including complications dominated by chronic inflammation, as well as the fact that these findings also contribute to the understanding of the specific mechanisms by which gut flora metabolites contribute to metabolic processes in humans. This review proposes an emerging role for SCFA in the inflammatory Mets, followed by the identification of major ambiguities to further understand the anti-inflammatory potential of this substance in Mets. In addition, this study proposes novel strategies to modulate SCFA for the treatment of Mets that may help to mitigate the prognosis of Mets and its complications.
Collapse
Affiliation(s)
- Wenqian Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yutong Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Olaniyi KS, Areloegbe SE. Acetate ameliorates ovarian mitochondrial dysfunction in letrozole-induced polycystic ovarian syndrome rat model by improving mitofusin-2. J Physiol Sci 2024; 74:22. [PMID: 38561673 PMCID: PMC10983676 DOI: 10.1186/s12576-024-00908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Androgen excess and metabolic abnormality largely contribute to the pathogenesis of polycystic ovarian syndrome (PCOS), which primarily precipitates ovarian dysfunction and infertility in reproductive-age women. Impaired mitochondrial function and epigenetic alteration have been linked to the development of PCOS. However, it is unknown whether acetate would exert a therapeutic effect on ovarian mitochondrial dysfunction in PCOS. Herein, the study hypothesized that acetate reverses ovarian mitochondrial dysfunction in experimental PCOS rat model, possibly through modulation of mitofusin-2 (MFn2). Eight-week-old female Wistar rats were randomized into four groups (n = 5). Induction of PCOS was performed by 1 mg/kg letrozole (p.o.), administered for 21 days. Thereafter, the rats were treated with acetate (200 mg/kg; p.o.) for 6 weeks. The PCOS rats demonstrated androgen excess, multiple ovarian cysts, elevated anti-mullerian hormone and leptin and decreased SHBG, adiponectin and 17-β estradiol with corresponding increase in ovarian transforming growth factor-β1. Additionally, inflammation (tumor growth factor and nuclear factor-kB), elevated caspase-6, decreased hypoxia-inducible factor-1α and elevated histone deacetylase-2 (HDAC2) were observed in the ovaries of PCOS rats, while mitochondrial abnormality with evidence of decreased adenosine triphosphate synthase and MFn2 was observed in rats with PCOS. Treatment with acetate reversed the alterations. The present results collectively suggest that acetate ameliorates ovarian mitochondrial abnormality, a beneficial effect that is accompanied by MFn2 with consequent normalization of reproductive-endocrine profile and ovarian function. Perhaps, the present data provide hope for PCOS individuals that suffer infertility.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria.
| | - Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| |
Collapse
|