1
|
Grabowski GA, Kishnani PS, Alcalay RN, Prakalapakorn SG, Rosenbloom BE, Tuason DA, Weinreb NJ. Challenges in Gaucher disease: Perspectives from an expert panel. Mol Genet Metab 2025; 145:109074. [PMID: 40112481 DOI: 10.1016/j.ymgme.2025.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/25/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
This focused review concentrates on eight topics of high importance for Gaucher disease (GD) clinicians and researchers: 1) The consideration of GD as distinct types rather than a spectrum. A review of the literature clearly supports the view that there are distinct types of GD. Type 1 is characterized by the absence of primary neuronopathic involvement, while types 2 and 3 are characterized by progressive primary neuronopathic disease. 2) Neurologic and neuronopathic manifestations. A growing body of evidence indicates that the peripheral nervous system may be involved in GD type 1 and that there may also be signs and symptoms of central nervous system (CNS) disease in this group. However, GD type 1 is characterized by the absence of primary neuronopathic disease, whereas GD types 2 and 3 are characterized by progressive, albeit variable, primary neuronopathic disease. Abnormalities in saccadic eye movements have been suggested as being diagnostic for neuronopathic GD, but they may also occur in GD type 1 and in other inflammatory diseases. 3) The importance of whole GBA1 sequencing. This approach is superior to exome sequencing because of potential effects of deep intronic variants on gene expression. It also has the capacity to detect variant alleles that might be missed with gene panels. 4) Monoclonal gammopathy of undetermined significance (MGUS). The risks of MGUS, multiple myeloma, and non-Hodgkin's lymphoma are elevated in patients with GD compared to the general population and strong evidence indicates that lyso-Gb1 stimulates the formation of monoclonal immunoglobulins (M-protein) in patients with GD and MGUS. 5) Pulmonary involvement in GD. Pulmonary complications can be identified through spirometry in up to 45 % of patients with GD type 1 and 55 % of those with GD type 3. Limited evidence exists that enzyme replacement therapy (ERT) reduces the severity of these complications in patients with GD type 1. 6) Gaucheromas. These may occur in patients with GD types 1 or 3, but there is little detailed information about their inception, mechanisms underlying growth, cellular organization, and biochemical activities, and no definitive guidance for their management. Gaucheromas behave like benign (i.e. non-metastasizing) neoplasms, and it may be reasonable to classify them as such. 7) Bone and joint involvement. Dual-energy X-ray absorptiometry scans alone are insufficient for monitoring all changes in bone that may occur in patients with GD. Quantitative magnetic resonance imaging (MRI) techniques using Dixon quantitative chemical shift imaging have provided results that correlate with GD severity scores, bone complications, and biomarkers for GD bone involvement. Thoracic kyphosis is a common complication of GD types 1 and 3, and there is very limited information regarding the effects of ERT or substrate synthesis inhibition therapy (SSIT) on this condition. 8) Treatment initiation, selection, combination, and switching. Prompt initiation of treatment in pediatric patients is important as GD can lead to impaired growth, lower peak bone mass, and delayed puberty. These adverse outcomes can often be ameliorated or prevented with timely treatment. Either ERT or eliglustat, a SSIT agent, is suitable as first-line treatment of adults with GD. Studies of switching from ERT to eliglustat, or between different ERT products, have indicated that changing treatment is safe, although efficacy outcomes vary. A critical remaining issue is the lack of treatments capable of reaching the CNS to slow or halt the progression of neuronopathic disease in patients with GD type 2 or 3 and potentially reduce the risk of Parkinson's disease in GD type 1 patients and heterozygotes for GBA1 variants.
Collapse
Affiliation(s)
- Gregory A Grabowski
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, 905 Lasalle Street, GSRB1, 4th Floor, Room 4010, Durham, NC 27710, USA.
| | - Roy N Alcalay
- Neurological Institute of New York, Columbia University, 710 West 168th Street, New York, NY 10032, USA.
| | - S Grace Prakalapakorn
- Department of Ophthalmology and Pediatrics, Duke University Medical Center, 2351 Erwin Rd, Box 3802, DUMC, Durham, NC 27705-4699, USA.
| | - Barry E Rosenbloom
- Cedars-Sinai Tower Hematology Oncology Medical Group, 9090 Wilshire Blvd #300, Beverly Hills, CA 90211, USA.
| | - Dominick A Tuason
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, 800 Howard Ave, New Haven, CT 06510, USA.
| | - Neal J Weinreb
- University of Miami UHealth Sylvester Cancer Center Coral Springs, 8170 Royal Palm Blvd, Coral Springs, FL 33065, USA
| |
Collapse
|
2
|
Bahramifar A, Jafari RM, Sheibani M, Manavi MA, Rashidian A, Tavangar SM, Akbariani M, Mohammadi Hamaneh A, Goudarzi R, Shadboorestan A, Dehpour AR. Sumatriptan mitigates bleomycin-induced lung fibrosis in male rats: Involvement of inflammation, oxidative stress and α-SMA. Tissue Cell 2024; 88:102349. [PMID: 38492426 DOI: 10.1016/j.tice.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung condition that produces symptoms including coughing which may cause by excessive accumulation of scar tissue inflammatory and oxidative stress exacerbation. Sumatriptan, utilized for migraine treatment as a selective 5-HT1B/1D receptor agonist, has demonstrated significant anti-inflammatory and antioxidant properties in multiple preclinical investigations. Operating primarily on serotonin receptors, sumatriptan leverages the diverse physiological functions of serotonin, playing a pivotal role in regulating both inflammation and oxidative stress which is particularly relevant in the context of IPF. MATERIALS & METHODS Thirty-five male Wistar rats were divided to five group, including: Sham (without IPF induction), control (BLM 5 mg/kg, intraperitoneally), and three fibrosis group with sumatriptan (0.5, 1, and 3 mg/kg, i.p. for 2 weeks) administration. IPF was induced by injection of BLM (single dose, 5 mg/kg intratracheally). Lung tissues were separated for measurement of myeloperoxidase (MPO) as an oxidative stress hallmark, and tumor necrosis factor-α (TNF-α), interleukin-1β (IL-β), and transforming growth factor-β (TGF-β) as inflammatory markers as well as alpha smooth muscle actin (α-SMA). Also, for histological investigations, tissue damages were assessed by Hematoxylin-eosin (H&E) and Masson's trichrome staining method. RESULTS BLM-induced fibrosis could increase α-SMA, MPO, TNF-α, IL-1β, and TGF-β, while treatment with sumatriptan has reversed the α-SMA, MPO, and IL-1β levels. Moreover, the results of H&E and Masson's trichrome staining indicated that sumatriptan (1 and 3 mg/kg) reduced tissue damages, alveolar wall thickness, collagen accumulation, and pulmonary fibrosis induced by BLM. CONCLUSION According to the data achieved from this study, Sumatriptan appears to have therapeutic benefits in IPF, possibly via reducing α-SMA as well as inflammation and the toxicity caused by oxidative stress.
Collapse
Affiliation(s)
- Ayda Bahramifar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Pharmacology, School of Medicine, Indiana University, Indianapolis, USA
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Mohammadi Hamaneh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, CA, United States
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medicine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|