1
|
Song J, Zhang H, Zhang X, Liu M, Peng D, Ren Y, Sun Y, Li Y. Galactose-modified erythrocyte membrane fusion liposomes enable the targeted delivery of drug nanoparticles to the liver. RSC Adv 2025; 15:17781-17794. [PMID: 40443690 PMCID: PMC12120831 DOI: 10.1039/d4ra07489k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/11/2025] [Indexed: 06/02/2025] Open
Abstract
The safe and efficient delivery of chemicals and biologics remains crucial for liver disease therapy. In this study, we developed a targeted drug delivery system utilizing a galactose-modified erythrocyte membrane coating technique and drug liposome nanoparticles, which were further optimized using orthogonal experiments and response surface analysis. The specificity, precision, accuracy, and stability exhibited satisfactory performance in bioanalytical analysis. Specifically, targeting ligands (Gal-DSPE-PEG3400) were efficiently inserted into red blood cell (RBC) membranes using a facile insertion method. When Gal-DSPE-PEG3400-RBC was fused with fenofibrate liposome nanoparticles (FNB-Lip) by co-extrusion, the resulting galactose-modified erythrocyte membrane fusion liposome nanoparticles (Gal-RBC-FNB-Lip) showed long-term stability, excellent biocompatibility, prolonged retention time, and superior liver accumulation and therapeutic efficacy. These qualities make it suitable for effective drug delivery. The findings of this study will provide a fundamental basis for research and development of liver-targeted drugs and offer novel insights into the treatment of clinical liver diseases.
Collapse
Affiliation(s)
- Jiayu Song
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
- College of Medical Technology, Luohe Medical College Luohe 462000 P. R. China
| | - Huanhuan Zhang
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| | - Xiaohui Zhang
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| | - Meiying Liu
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| | - Dan Peng
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| | - Yuan Ren
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| | - Yan Sun
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| | - Yunlan Li
- School of Public Health, Shaanxi University of Chinese Medicine Xi'an 712046 P. R. China
- School of Pharmaceutical Science, Shanxi Medical University Taiyuan 030001 P. R. China +86 13111066649
| |
Collapse
|
2
|
Jiang S, Wang Y, Ren Y, Tang Q, Xue C, Wang Z, Zhang Q, Hu Y, Wang H, Zhao F, Zhu MX, Cao Z. TRPC6 suppresses liver fibrosis by inhibiting hepatic stellate cell activation via CaMK4-CREB pathway. Br J Pharmacol 2025. [PMID: 39887689 DOI: 10.1111/bph.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Genetic ablation or inhibition of the cation channel TRPC6 is protective against renal, cardiac and intestinal fibrosis. However, TRPC6 expression is decreased in patients with liver diseases. Here, we explored the role of TRPC6 in liver fibrosis and the underlying mechanism. EXPERIMENTAL APPROACH Bile duct ligation and thioacetamide gavage were used to model liver fibrosis in C57BL/6J mice. Western blotting, immunolabelling and qPCR were employed for protein and mRNA expression. Liver injury/fibrosis were assessed using serum alanine transaminase and aspartate transaminase assays, haematoxylin-eosin, Masson and Sirius red staining. Adenoviruses were used to overexpress TRPC6 and CREB1Y134F. ChIP and dual-luciferase reporter assays were performed to test the direct inhibition of Acta2 transcription by CREB. KEY RESULTS TRPC6 protein levels were decreased in fibrotic liver tissues from both patients and mice, with the decrease being more robust in fibrotic areas. In hepatic stellate cells (HSCs), TRPC6 ablation aggravated liver injury and fibrosis, which was alleviated by overexpressing TRPC6. In primary cultured HSCs, deletion of TRPC6 exacerbated self-activation of HSCs, which was reversed by restoration of TRPC6 expression. Mechanistically, TRPC6 suppressed HSC activation through CaMK4-mediated CREB phosphorylation. CREB directly interacted with the promoter region of Acta2 to inhibit its transcription. Expression of a constitutively active form of CREB1 (CREB1Y134F) in HSCs attenuated BDL-induced liver injury/fibrosis in TRPC6 knockout mice. CONCLUSION AND IMPLICATIONS Deficiency of TRPC6 aggravates liver injury/fibrosis through augmentation of HSC activation. Increasing TRPC6 expression/function would be therapeutically beneficial for fibrotic liver diseases.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yujing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Younan Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chu Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi Wang
- Department of Gastroenterology, Zhongda Hospital, Nanjing, China
| | - Qi Zhang
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yixin Hu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Vinutha M, Sharma UR, Swamy G, Rohini S, Vada S, Janandri S, Haribabu T, Taj N, Gayathri SV, Jyotsna SK, Mudagal MP. COVID-19-related liver injury: Mechanisms, diagnosis, management; its impact on pre-existing conditions, cancer and liver transplant: A comprehensive review. Life Sci 2024; 356:123022. [PMID: 39214285 DOI: 10.1016/j.lfs.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
AIMS This review explores the mechanisms, diagnostic approaches, and management strategies for COVID-19-induced liver injury, with a focus on its impact on patients with pre-existing liver conditions, liver cancer, and those undergoing liver transplantation. MATERIALS AND METHODS A comprehensive literature review included studies on clinical manifestations of liver injury due to COVID-19. Key areas examined were direct viral effects, drug-induced liver injury, cytokine storms, and impacts on individuals with chronic liver diseases, liver transplants, and the role of vaccination. Data were collected from clinical trials, observational studies, case reports, and review literature. KEY FINDINGS COVID-19 can cause a spectrum of liver injuries, from mild enzyme elevations to severe hepatic dysfunction. Injury mechanisms include direct viral invasion, immune response alterations, drug toxicity, and hypoxia-reperfusion injury. Patients with chronic liver conditions (such as alcohol-related liver disease, nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma) face increased risks of severe outcomes. The pandemic has worsened pre-existing liver conditions, disrupted cancer treatments, and complicated liver transplantation. Vaccination remains crucial for reducing severe disease, particularly in chronic liver patients and transplant recipients. Telemedicine has been beneficial in managing patients and reducing cross-infection risks. SIGNIFICANCE This review discusses the importance of improved diagnostic methods and management strategies for liver injury caused by COVID-19. It emphasizes the need for close monitoring and customized treatment for high-risk groups, advocating for future research to explore long-term effects, novel therapies, and evidence-based approaches to improve liver health during and after the pandemic.
Collapse
Affiliation(s)
- M Vinutha
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Uday Raj Sharma
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India.
| | - Gurubasvaraja Swamy
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S Rohini
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Surendra Vada
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Suresh Janandri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - T Haribabu
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Nageena Taj
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S V Gayathri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S K Jyotsna
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Manjunatha P Mudagal
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| |
Collapse
|