1
|
Verrotti A, Moavero R, Vigevano F, Cantonetti L, Guerra A, Spezia E, Tricarico A, Nanni G, Agostinelli S, Chiarelli F, Parisi P, Capovilla G, Beccaria F, Spalice A, Coppola G, Franzoni E, Gentile V, Casellato S, Veggiotti P, Malgesini S, Crichiutti G, Balestri P, Grosso S, Zamponi N, Incorpora G, Savasta S, Costa P, Pruna D, Cusmai R. Long-term follow-up in children with benign convulsions associated with gastroenteritis. Eur J Paediatr Neurol 2014; 18:572-7. [PMID: 24780603 DOI: 10.1016/j.ejpn.2014.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND The outcome of benign convulsions associated with gastroenteritis (CwG) has generally been reported as being excellent. However, these data need to be confirmed in studies with longer follow-up evaluations. AIM To assess the long-term neurological outcome of a large sample of children presenting with CwG. METHODS We reviewed clinical features of 81 subjects presenting with CwG (1994-2010) from three different Italian centers with a follow-up period of at least 3 years. RESULTS Follow-up period ranged from 39 months to 15 years (mean 9.8 years). Neurological examination and cognitive level at the last evaluation were normal in all the patients. A mild attention deficit was detected in three cases (3.7%). Fourteen children (17.3%) received chronic anti-epileptic therapy. Interictal EEG abnormalities detected at onset in 20 patients (24.7%) reverted to normal. Transient EEG epileptiform abnormalities were detected in other three cases (3.7%), and a transient photosensitivity in one (1.2%). No recurrence of CwG was observed. Three patients (3.7%) presented with a febrile seizure and two (2.5%) with an unprovoked seizure, but none developed epilepsy. CONCLUSIONS The long-term evaluation of children with CwG confirms the excellent prognosis of this condition, with normal psychomotor development and low risk of relapse and of subsequent epilepsy.
Collapse
Affiliation(s)
- Alberto Verrotti
- Department of Pediatrics, University of Perugia, Perugia, Italy.
| | - Romina Moavero
- Systems Medicine Department, Child Neurology Unit, Tor Vergata University Hospital of Rome, Italy
| | - Federico Vigevano
- Neuroscience Department, Pediatric Neurology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Laura Cantonetti
- Neuroscience Department, Pediatric Neurology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Azzurra Guerra
- Pediatric Neurology, Azienda Policlinico Modena, Modena, Italy
| | | | | | - Giuliana Nanni
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Pasquale Parisi
- Chair of Pediatrics, II Faculty of Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Capovilla
- Epilepsy Center, Department of Child Neuropsychiatry, C. Poma Hospital, Mantova, Italy
| | - Francesca Beccaria
- Epilepsy Center, Department of Child Neuropsychiatry, C. Poma Hospital, Mantova, Italy
| | - Alberto Spalice
- Department of Pediatrics, "La Sapienza" University of Rome, Italy
| | | | - Emilio Franzoni
- Department of Child Neuropsychiatry, University of Bologna, Bologna, Italy
| | - Valentina Gentile
- Department of Child Neuropsychiatry, University of Bologna, Bologna, Italy
| | | | - Pierangelo Veggiotti
- Department of Child Neuropsychiatry, Child EEG Unit, Foundation C. Mondino Institute of Neurology, Pavia, Italy
| | - Sara Malgesini
- Department of Child Neuropsychiatry, Child EEG Unit, Foundation C. Mondino Institute of Neurology, Pavia, Italy
| | | | | | | | - Nelia Zamponi
- Department of Child Neuropsychiatry, University of Ancona, Italy
| | | | | | - Paola Costa
- Department of Child Neuropsychiatry, IRCCS Burlo Garofalo, Trieste, Italy
| | - Dario Pruna
- Division of Child Neurology and Psychiatry, Azienda Ospedaliero-Universitaria Cagliari, Italy
| | - Raffaella Cusmai
- Neuroscience Department, Pediatric Neurology Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
2
|
van Luijtelaar G, Onat FY, Gallagher MJ. Animal models of absence epilepsies: what do they model and do sex and sex hormones matter? Neurobiol Dis 2014; 72 Pt B:167-79. [PMID: 25132554 DOI: 10.1016/j.nbd.2014.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
Abstract
While epidemiological data suggest a female prevalence in human childhood- and adolescence-onset typical absence epilepsy syndromes, the sex difference is less clear in adult-onset syndromes. In addition, although there are more females than males diagnosed with typical absence epilepsy syndromes, there is a paucity of studies on sex differences in seizure frequency and semiology in patients diagnosed with any absence epilepsy syndrome. Moreover, it is unknown if there are sex differences in the prevalence or expression of atypical absence epilepsy syndromes. Surprisingly, most studies of animal models of absence epilepsy either did not investigate sex differences, or failed to find sex-dependent effects. However, various rodent models for atypical syndromes such as the AY9944 model (prepubertal females show a higher incidence than prepubertal males), BN model (also with a higher prevalence in males) and the Gabra1 deletion mouse in the C57BL/6J strain offer unique possibilities for the investigation of the mechanisms involved in sex differences. Although the mechanistic bases for the sex differences in humans or these three models are not yet known, studies of the effects of sex hormones on seizures have offered some possibilities. The sex hormones progesterone, estradiol and testosterone exert diametrically opposite effects in genetic absence epilepsy and pharmacologically-evoked convulsive types of epilepsy models. In addition, acute pharmacological effects of progesterone on absence seizures during proestrus are opposite to those seen during pregnancy. 17β-Estradiol has anti-absence seizure effects, but it is only active in atypical absence models. It is speculated that the pro-absence action of progesterone, and perhaps also the delayed pro-absence action of testosterone, are mediated through the neurosteroid allopregnanolone and its structural and functional homolog, androstanediol. These two steroids increase extrasynaptic thalamic tonic GABAergic inhibition by selectively targeting neurosteroid-selective subunits of GABAA receptors (GABAARs). Neurosteroids also modulate the expression of GABAAR containing the γ2, α4, and δ subunits. It is hypothesized that differences in subunit expression during pregnancy and ovarian cycle contribute to the opposite effects of progesterone in these two hormonal states.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre of Cognition, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Filiz Yilmaz Onat
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
3
|
Abstract
Benign epilepsy with centrotemporal spikes, early-onset childhood occipital epilepsy (Panayiotopoulos syndrome [PS]) and late-onset childhood occipital epilepsy (Gastaut type [LOCE-G]) are the principal pediatric focal epilepsy syndromes. They share major common characteristics: the appearance and resolution of electroclinical features are age related, there is a strong genetic predisposition, the clinical course is often mild with infrequent and easy to control seizures, interictal epileptiform activity is disproportionately abundant when compared with the clinical correlate, and tends to potentiate and generalize during sleep. In this review, we outline the relevant pathophysiology underlying this electroclinical spectrum. Then, the initial description of individual syndromes is followed by a summary of overlapping features and intermediate presentations that question the boundaries between these entities and provide the basis for the concept of a childhood seizure susceptibility syndrome. Additionally, we outline the main features of the related epileptic encephalopathies. An outlook on potential future lines of research completes this review.
Collapse
|
4
|
Steinlein OK. Ion channel mutations in neuronal diseases: a genetics perspective. Chem Rev 2012; 112:6334-52. [PMID: 22607259 DOI: 10.1021/cr300044d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ortrud K Steinlein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University , Goethestr. 29, D-80336 Munich, Germany
| |
Collapse
|
5
|
Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:854-76. [PMID: 21093520 DOI: 10.1016/j.pnpbp.2010.11.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/28/2010] [Accepted: 11/09/2010] [Indexed: 01/02/2023]
Abstract
A great number of clinical observations show a relationship between epilepsy and depression. Idiopathic generalized epilepsy, including absence epilepsy, has a genetic basis. The review provides evidence that WAG/Rij rats can be regarded as a valid genetic animal model of absence epilepsy with comorbidity of depression. WAG/Rij rats, originally developed as an animal model of human absence epilepsy, share many EEG and behavioral characteristics resembling absence epilepsy in humans, including the similarity of action of various antiepileptic drugs. Behavioral studies indicate that WAG/Rij rats exhibit depression-like symptoms: decreased investigative activity in the open field test, increased immobility in the forced swimming test, and decreased sucrose consumption and preference (anhedonia). In addition, WAG/Rij rats adopt passive strategies in stressful situations, express some cognitive disturbances (reduced long-term memory), helplessness, and submissiveness, inability to make choice and overcome obstacles, which are typical for depressed patients. Elevated anxiety is not a characteristic (specific) feature of WAG/Rij rats; it is a characteristic for only a sub-strain of WAG/Rij rats susceptible to audiogenic seizures. Interestingly, WAG/Rij rats display a hyper-response to amphetamine similar to anhedonic depressed patients. WAG/Rij rats are sensitive only to chronic, but not acute, antidepressant treatments, suggesting that WAG/Rij rats fulfill a criterion of predictive validity for a putative animal model of depression. However, more and different antidepressant drugs still await evaluation. Depression-like behavioral symptoms in WAG/Rij rats are evident at baseline conditions, not exclusively after stress. Experiments with foot-shock stress do not point towards higher stress sensitivity at both behavioral and hormonal levels. However, freezing behavior (coping deficits) and blunted response of 5HT in the frontal cortex to uncontrollable sound stress, increased c-fos expression in the terminal regions of the meso-cortico-limbic brain systems and greater DA response of the mesolimbic system to forced swim stress suggest that WAG/Rij rats are vulnerable to some, but not to all types of stressors. We propose that genetic absence epileptic WAG/Rij rats have behavioral depression-like symptoms, are vulnerable to stress and might represent a model of chronic low-grade depression (dysthymia). Both 5HT and DAergic abnormalities detected in the brain of WAG/Rij rats are involved in modulation of vulnerability to stress and provocation of behavioral depression-like symptoms. The same neurotransmitter systems modulate SWDs as well. Recent studies suggest that the occurrence and repetition of absence seizures are a precipitant of depression-like behavior. Whether the neurochemical changes are primary to depression-like behavioral alterations remains to be determined. In conclusion, the WAG/Rij rats can be considered as a genetic animal model for absence epilepsy with comorbidity of dysthymia. This model can be used to investigate etiology, pathogenic mechanisms and treatment of a psychiatric comorbidity, such as depression in absence epilepsy, to reveal putative genes contributing to comorbid depressive disorder, and to screen novel psychotropic drugs with a selective and/or complex (dual) action on both pathologies.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov str. 5a, Moscow 117485, Russia.
| | | |
Collapse
|
6
|
Martín Del Valle F, Díaz Negrillo A, Ares Mateos G, Sanz Santaeufemia FJ, Del Rosal Rabes T, González-Valcárcel Sánchez-Puelles FJ. Panayiotopoulos syndrome: probable genetic origin, but not in SCN1A. Eur J Paediatr Neurol 2011; 15:155-7. [PMID: 20813567 DOI: 10.1016/j.ejpn.2010.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/28/2010] [Accepted: 08/09/2010] [Indexed: 11/16/2022]
Abstract
Panayiotopoulos syndrome is encompassed in the classification of the ILAE in idiopathic focal epilepsies. Mutations in the SCN1A gene have been associated with the development of this syndrome. We present two cases of Panayiotopoulos syndrome in two monozygotic twins, who underwent a molecular analysis of SCN1A, but no alteration was found. These cases suggest a genetic origin, and SCN1A appears to be associated with the outcome but not with the development of this syndrome.
Collapse
Affiliation(s)
- F Martín Del Valle
- Paediatric Neurology Unit, Paediatric Service, Infanta Elena Hospital, Av Reyes Católicos 21, CP 28340 Valdemoro, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Rudolf G, Valenti MP, Hirsch E, Szepetowski P. From rolandic epilepsy to continuous spike-and-waves during sleep and Landau-Kleffner syndromes: insights into possible genetic factors. Epilepsia 2009; 50 Suppl 7:25-8. [PMID: 19682046 DOI: 10.1111/j.1528-1167.2009.02214.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epilepsy is a frequent neurologic disease in childhood, characterized by recurrent seizures and sometimes with major effects on social, behavioral, and cognitive development. Childhood focal epilepsies particularly are age-related diseases mainly occurring during developmental critical periods. A complex interplay between brain development and maturation processes and susceptibility genes may contribute to the development of various childhood epileptic syndromes associated with language and cognitive deficits. Indeed, the Landau-Kleffner syndrome (LKS), the continuous spike-and-waves during sleep syndrome (CSWS), and the benign childhood epilepsy with centrotemporal spikes (BCECTS) or benign rolandic epilepsy, are different entities that are considered as part of a single continuous spectrum of disorders. Genetic predisposition with simple to complex modes of inheritance has long been suspected for this wide group of childhood focal epilepsies. Recent reports on the involvement of the SRPX2 and ELP4 genes with possible roles in cell motility, migration, and adhesion have provided first insights into the complex molecular bases of childhood focal epilepsies.
Collapse
Affiliation(s)
- Gabrielle Rudolf
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital BP 426, Strasbourg cedex, France.
| | | | | | | |
Collapse
|
8
|
Sarkisova KY, Kuznetsova GD, Kulikov MA, van Luijtelaar G. Spike-wave discharges are necessary for the expression of behavioral depression-like symptoms. Epilepsia 2009; 51:146-60. [PMID: 19674046 DOI: 10.1111/j.1528-1167.2009.02260.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The WAG/Rij strain of rats, a well-established model for absence epilepsy, has comorbidity for depression. These rats exhibit depression-like behavioral symptoms such as increased immobility in the forced swimming test and decreased sucrose intake and preference (anhedonia). These depression-like behavioral symptoms are evident in WAG/Rij rats, both at 3-4 and 5-6 months of age, with a tendency to aggravate in parallel with an increase in seizure duration. Here we investigated whether the behavioral symptoms of depression could be prevented by the suppression of absence seizures. METHODS Ethosuximide (ETX; 300 mg/kg/day, in the drinking water) was chronically applied to WAG/Rij rats from postnatal day 21 until 5 months. Behavioral tests were done before the cessation of the treatment. Electroencephalography (EEG) recordings were made before and after cessation of treatment to measure seizure severity at serial time-points. RESULTS ETX-treated WAG/Rij rats exhibited no symptoms of depression-like behavior in contrast to untreated WAG/Rij rats of the same age. Moreover, treated WAG/Rij rats did not differ from control age-matched Wistar rats. ETX treatment led to almost complete suppression of spike-wave discharges (SWDs) in 5-6 month old WAG/Rij rats. Discontinuation of chronic treatment was accompanied by a gradual emergence of SWDs; however, a persistent reduction in seizure activity was still present 47 days after discontinuation of the chronic treatment. DISCUSSION The results suggest that seizure activity is necessary for the expression of depression-like behavioral symptoms and confirm that epileptogenesis can be prevented by early and chronic treatment.
Collapse
Affiliation(s)
- Karine Yu Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov street 5A, Moscow 117485, Russia.
| | | | | | | |
Collapse
|
9
|
Curatolo P, Moavero R, Castro AL, Cerminara C. Pharmacotherapy of idiopathic generalized epilepsies. Expert Opin Pharmacother 2008; 10:5-17. [DOI: 10.1517/14656560802618647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Bertelli M, Cecchin S, Lapucci C, de Gemmis P, Danieli D, d'Amore ESG, Buttolo L, Giunta F, Mortini P, Pandolfo M. Quantification of chloride channel 2 (CLCN2) gene isoforms in normal versus lesion- and epilepsy-associated brain tissue. Biochim Biophys Acta Mol Basis Dis 2007; 1772:15-20. [PMID: 17156979 DOI: 10.1016/j.bbadis.2006.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 10/24/2022]
Abstract
The chloride channel 2 (CLCN2) gene codes for a protein organized in N- and C-terminal regions with regulatory functions and a transmembrane region which forms the ring of the pore. Mutations in the gene have previously been described in patients with idiopathic familial epilepsy. In this study we looked for new isoforms of CLCN2 and we estimated expression levels by real time PCR in brain tissue containing epileptic foci. Samples used in this study were first analyzed and selected to exclude mutations in the coding region of the gene. Four isoforms (skipping exons 3, 16, 22 and 6/7) were identified and quantified by Real Time PCR and compared with total expression of the gene. Expression of the region common to all CLCN2 isoforms was 50% less in epilepsy-associated brain tissue than in controls. The ratio of the various isoforms was slightly greater in epileptic than control tissue. The greatest difference was recorded in the temporal lobe for the isoform with skipped exon 22. Analysis of these isoforms in brain tissue containing epileptic foci suggests that CLCN2 could be implicated in epilepsy, even in the absence of mutations.
Collapse
Affiliation(s)
- Matteo Bertelli
- Istituto Malattie Rare Mauro Baschirotto [corrected] BIRD Foundation Onlus, Costozza [corrected] Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aridon P, Marini C, Di Resta C, Brilli E, De Fusco M, Politi F, Parrini E, Manfredi I, Pisano T, Pruna D, Curia G, Cianchetti C, Pasqualetti M, Becchetti A, Guerrini R, Casari G. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am J Hum Genet 2006; 79:342-50. [PMID: 16826524 PMCID: PMC1559502 DOI: 10.1086/506459] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/01/2006] [Indexed: 11/03/2022] Open
Abstract
Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep walking. We identified a new genetic locus for familial sleep-related focal epilepsy on chromosome 8p12.3-8q12.3. By sequencing the positional candidate neuronal cholinergic receptor alpha 2 subunit gene (CHRNA2), we detected a heterozygous missense mutation, I279N, in the first transmembrane domain that is crucial for receptor function. Whole-cell recordings of transiently transfected HEK293 cells expressing either the mutant or the wild-type receptor showed that the new CHRNA2 mutation markedly increases the receptor sensitivity to acetylcholine, therefore indicating that the nicotinic alpha 2 subunit alteration is the underlying cause. CHRNA2 is the third neuronal cholinergic receptor gene to be associated with familial sleep-related epilepsies. Compared with the CHRNA4 and CHRNB2 mutations reported elsewhere, CHRNA2 mutations cause a more complex and finalized ictal behavior.
Collapse
Affiliation(s)
- Paolo Aridon
- Human Molecular Genetics Unit, Dibit San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Urak L, Feucht M, Fathi N, Hornik K, Fuchs K. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 2006; 15:2533-41. [PMID: 16835263 DOI: 10.1093/hmg/ddl174] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood absence epilepsy (CAE) is considered to exhibit a complex non-Mendelian pattern of inheritance. So far, only few CAE susceptibility genes have been identified. In a previous study of our group, an association between the GABA(A) receptor beta3 subunit (GABRB3) gene and CAE was shown. To further investigate this association, we screened 45 CAE patients of the first study for mutations in the 10 exons, the exon-intron boundaries and the regulatory sequences of GABRB3. Although we found no functionally relevant mutation, we did identify 13 single nucleotide polymorphisms (SNPs) in the GABRB3 gene region from the exon 1a promoter to the beginning of intron 3. Using these SNPs we defined four haplotypes for the respective GABRB3 gene region. A transmission disequilibrium test in the same 45 CAE patients and their parents indicated a significant association of this region and CAE (P=0.007075). Reporter gene assays in NT2 cells using exon 1a promoter constructs indicated that the disease-associated haplotype 2 promoter causes a significantly lower transcriptional activity than the haplotype 1 promoter that is over-represented in the controls. In silico analysis suggested that an exchange from T (haplotype 1) to C (haplotype 2) within this promoter impairs binding of the neuron-specific transcriptional activator N-Oct-3. Electrophoretic mobility shift assays demonstrated that the respective polymorphism reduces the nuclear protein binding affinity, thus explaining the results of the reporter gene assays. Reduced expression of the GABRB3 gene could therefore be one potential cause for the development of CAE, pathogenetically relevant in our patient group.
Collapse
Affiliation(s)
- Lydia Urak
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
13
|
Abstract
The idiopathic generalized epilepsies encompass a class of epileptic seizure types that exhibit a polygenic and heritable etiology. Advances in molecular biology and genetics have implicated defects in certain types of voltage-gated calcium channels and their ancillary subunits as important players in this form of epilepsy. Both T-type and P/Q-type channels appear to mediate important contributions to seizure genesis, modulation of network activity, and genetic seizure susceptibility. Here, we provide a comprehensive overview of the roles of these channels and associated subunits in normal and pathological brain activity within the context of idiopathic generalized epilepsy.
Collapse
Affiliation(s)
- Houman Khosravani
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|