1
|
Mastrangelo M, Bove R, Ricciardi G, Giordo L, Papoff P, Turco E, Lucente M, Pisani F. Clinical profiles of acute arterial ischemic neonatal stroke. Minerva Pediatr (Torino) 2024; 76:767-776. [PMID: 37255397 DOI: 10.23736/s2724-5276.23.07301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Perinatal stroke includes a heterogeneous group of early focal neurological injuries affecting subsequent brain development, often resulting in motor sequelae, symptomatic epilepsies, and cognitive, language and behavioral impairment. The incidence of perinatal stroke is about 1/3500 live birth. EVIDENCE ACQUISITION A PubMed and SCOPUS search strategy included the entries "neonatal ischemic stroke" OR "perinatal ischemic stroke" and the age of the filter under 18 years and January 2000-August 2022. EVIDENCE SYNTHESIS The cumulative literature analysis highlighted 3880 published patients (from 98 articles) with stroke, mainly presenting with clinical or electro-graphical seizures (2083 patients). The mean age at presentation was 2,5±2,4 days (data available for 1182 patients). Stroke occurred in the first week of life in 1164 newborns. The mainly involved ischemic areas were within the territories of the middle cerebral artery (1403 patients). Predisposing risk factors included fetal/newborn factors (1908 patients), dystocial birth (759 patients), maternal (678 patients), and placental factors (63 patients). No thrombolysis and/or endovascular treatments were performed, while data about other pharmacological treatments were restricted to a single article. The death occurred in 29 newborns. Motor, neurocognitive and language impairment were cumulatively reported in 875 patients. Epileptic seizures during the follow-up were reported in 238 cases. CONCLUSIONS The literature analysis highlighted that every term newborn presenting with acute neurological signs and symptoms during the first week of life should always be considered for the identification of an ischemic stroke.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Rossella Bove
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Giacomina Ricciardi
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Laura Giordo
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Paola Papoff
- Pediatric Intensive Care Unit, Department of Maternal-Infantile and Urological Sciences, Sapienza University, Rome, Italy
| | - Emanuela Turco
- Unit of Child Neurology and Psychiatry, University of Parma, Parma, Italy
| | - Maria Lucente
- Neonatal Intensive Care Unit, Pugliese Ciaccio Hospital, Catanzaro, Italy
| | - Francesco Pisani
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences, Sapienza University, Rome, Italy
| |
Collapse
|
2
|
Cheng W, Liu J, Jiang T, Li M. The application of functional imaging in visual field defects: a brief review. Front Neurol 2024; 15:1333021. [PMID: 38410197 PMCID: PMC10895022 DOI: 10.3389/fneur.2024.1333021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Visual field defects (VFDs) represent a prevalent complication stemming from neurological and ophthalmic conditions. A range of factors, including tumors, brain surgery, glaucoma, and other disorders, can induce varying degrees of VFDs, significantly impacting patients' quality of life. Over recent decades, functional imaging has emerged as a pivotal field, employing imaging technology to illustrate functional changes within tissues and organs. As functional imaging continues to advance, its integration into various clinical aspects of VFDs has substantially enhanced the diagnostic, therapeutic, and management capabilities of healthcare professionals. Notably, prominent imaging techniques such as DTI, OCT, and MRI have garnered widespread adoption, yet they possess unique applications and considerations. This comprehensive review aims to meticulously examine the application and evolution of functional imaging in the context of VFDs. Our objective is to furnish neurologists and ophthalmologists with a systematic and comprehensive comprehension of this critical subject matter.
Collapse
Affiliation(s)
- Wangxinjun Cheng
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary College, Nanchang University, Nanchang, China
| | - Jingshuang Liu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary College, Nanchang University, Nanchang, China
| | - Tianqi Jiang
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Moyi Li
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Early predictors of neurodevelopment after perinatal arterial ischemic stroke: a systematic review and meta-analysis. Pediatr Res 2022:10.1038/s41390-022-02433-w. [PMID: 36575364 DOI: 10.1038/s41390-022-02433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Perinatal arterial ischemic stroke (PAIS) often has lifelong neurodevelopmental consequences. We aimed to review early predictors (<4 months of age) of long-term outcome. METHODS We carried out a systematic literature search (PubMed and Embase), and included articles describing term-born infants with PAIS that underwent a diagnostic procedure within four months of age, and had any reported outcome parameter ≥12 months of age. Two independent reviewers included studies and performed risk of bias analysis. RESULTS We included 41 articles reporting on 1395 infants, whereof 1255 (90%) infants underwent follow-up at a median of 4 years. A meta-analysis was performed for the development of cerebral palsy (n = 23 studies); the best predictor was the qualitative or quantitative assessment of the corticospinal tracts on MRI, followed by standardized motor assessments. For long-term cognitive functioning, bedside techniques including (a)EEG and NIRS might be valuable. Injury to the optic radiation on DTI correctly predicted visual field defects. No predictors could be identified for behavior, language, and post-neonatal epilepsy. CONCLUSION Corticospinal tract assessment on MRI and standardized motor assessments are best to predict cerebral palsy after PAIS. Future research should be focused on improving outcome prediction for non-motor outcomes. IMPACT We present a systematic review of early predictors for various long-term outcome categories after perinatal arterial ischemic stroke (PAIS), including a meta-analysis for the outcome unilateral spastic cerebral palsy. Corticospinal tract assessment on MRI and standardized motor assessments are best to predict cerebral palsy after PAIS, while bedside techniques such as (a)EEG and NIRS might improve cognitive outcome prediction. Future research should be focused on improving outcome prediction for non-motor outcomes.
Collapse
|
4
|
He Y, Ying J, Tang J, Zhou R, Qu H, Qu Y, Mu D. Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Curr Neuropharmacol 2022; 20:2248-2266. [PMID: 35193484 PMCID: PMC9890291 DOI: 10.2174/1570159x20666220222144744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal arterial ischaemic stroke (NAIS) is caused by focal arterial occlusion and often leads to severe neurological sequelae. Neural deaths after NAIS mainly include necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. These neural deaths are mainly caused by upstream stimulations, including excitotoxicity, oxidative stress, inflammation, and death receptor pathways. The current clinical approaches to managing NAIS mainly focus on supportive treatments, including seizure control and anticoagulation. In recent years, research on the pathology, early diagnosis, and potential therapeutic targets of NAIS has progressed. In this review, we summarise the latest progress of research on the pathology, diagnosis, treatment, and prognosis of NAIS and highlight newly potential diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Jiang B, Mackay MT, Stence N, Domi T, Dlamini N, Lo W, Wintermark M. Neuroimaging in Pediatric Stroke. Semin Pediatr Neurol 2022; 43:100989. [PMID: 36344022 DOI: 10.1016/j.spen.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Pediatric stroke is unfortunately not a rare condition. It is associated with severe disability and mortality because of the complexity of potential clinical manifestations, and the resulting delay in seeking care and in diagnosis. Neuroimaging plays an important role in the multidisciplinary response for pediatric stroke patients. The rapid development of adult endovascular thrombectomy has created a new momentum in health professionals caring for pediatric stroke patients. Neuroimaging is critical to make decisions of identifying appropriate candidates for thrombectomy. This review article will review current neuroimaging techniques, imaging work-up strategies and special considerations in pediatric stroke. For resources limited areas, recommendation of substitute imaging approaches will be provided. Finally, promising new techniques and hypothesis-driven research protocols will be discussed.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University, Stanford, CA.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Nicholas Stence
- Department of Radiology, pediatric Neuroradiology Section, University of Colorado School of Medicine, Aurora, CO
| | - Trish Domi
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Nomazulu Dlamini
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Warren Lo
- Department of Pediatrics and Neurology, The Ohio State University & Nationwide Children's Hospital, Columbus, OH.
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Center, Houston, TX.
| |
Collapse
|
6
|
Kim Y, Im S, Oh J, Jung Y, Jun SY. Detection of post-stroke visual field loss by quantification of the retrogeniculate visual pathway. J Neurol Sci 2022; 439:120297. [DOI: 10.1016/j.jns.2022.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
|
7
|
Perinatal stroke: mapping and modulating developmental plasticity. Nat Rev Neurol 2021; 17:415-432. [PMID: 34127850 DOI: 10.1038/s41582-021-00503-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 02/04/2023]
Abstract
Most cases of hemiparetic cerebral palsy are caused by perinatal stroke, resulting in lifelong disability for millions of people. However, our understanding of how the motor system develops following such early unilateral brain injury is increasing. Tools such as neuroimaging and brain stimulation are generating informed maps of the unique motor networks that emerge following perinatal stroke. As a focal injury of defined timing in an otherwise healthy brain, perinatal stroke represents an ideal human model of developmental plasticity. Here, we provide an introduction to perinatal stroke epidemiology and outcomes, before reviewing models of developmental plasticity after perinatal stroke. We then examine existing therapeutic approaches, including constraint, bimanual and other occupational therapies, and their potential synergy with non-invasive neurostimulation. We end by discussing the promise of exciting new therapies, including novel neurostimulation, brain-computer interfaces and robotics, all focused on improving outcomes after perinatal stroke.
Collapse
|
8
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|
9
|
Zöllei L, Jaimes C, Saliba E, Grant PE, Yendiki A. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 2019; 199:1-17. [PMID: 31132451 PMCID: PMC6688923 DOI: 10.1016/j.neuroimage.2019.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022] Open
Abstract
The ongoing myelination of white-matter fiber bundles plays a significant role in brain development. However, reliable and consistent identification of these bundles from infant brain MRIs is often challenging due to inherently low diffusion anisotropy, as well as motion and other artifacts. In this paper we introduce a new tool for automated probabilistic tractography specifically designed for newborn infants. Our tool incorporates prior information about the anatomical neighborhood of white-matter pathways from a training data set. In our experiments, we evaluate this tool on data from both full-term and prematurely born infants and demonstrate that it can reconstruct known white-matter tracts in both groups robustly, even in the presence of differences between the training set and study subjects. Additionally, we evaluate it on a publicly available large data set of healthy term infants (UNC Early Brain Development Program). This paves the way for performing a host of sophisticated analyses in newborns that we have previously implemented for the adult brain, such as pointwise analysis along tracts and longitudinal analysis, in both health and disease.
Collapse
Affiliation(s)
- Lilla Zöllei
- Massachusetts General Hospital, Boston, United States.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Perinatal arterial ischemic stroke is a relatively common and serious neurologic disorder that can affect the fetus, the preterm, and the term-born infant. It carries significant long-term disabilities. Herein we describe the current understanding of its etiology, pathophysiology and classification, different presentations, and optimal early management. We discuss the role of different brain imaging modalities in defining the extent of lesions and the impact this has on the prediction of outcomes. In recent years there has been progress in treatments, making early diagnosis and the understanding of likely morbidities imperative. An overview is given of the range of possible outcomes and optimal approaches to follow-up and support for the child and their family in the light of present knowledge.
Collapse
|
11
|
Novak I, Morgan C. High-risk follow-up: Early intervention and rehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:483-510. [PMID: 31324326 DOI: 10.1016/b978-0-444-64029-1.00023-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early detection of childhood disability is possible using clinically available tools and procedures. Early detection of disability enables early intervention that maximizes the child's outcome, prevents the onset of complications, and supports parents. In this chapter, first we summarize the best-available tools for accurately predicting major childhood disabilities early, including autism spectrum disorder, cerebral palsy, developmental coordination disorder, fetal alcohol spectrum disorder, intellectual disability, hearing impairment, and visual impairment. Second, we provide an overview of the preclinical and clinical evidence for inducing neuroplasticity following brain injury. Third, we describe and appraise the evidence base for: (a) training-based interventions that induce neuroplasticity, (b) rehabilitation interventions not focused on inducing neuroplasticity, (c) complementary and alternative interventions, (d) environmental enrichment interventions in the neonatal intensive care and community settings, and (e) parent-child interaction interventions in the neonatal intensive care and community settings. Fourth, we explore emergent treatment options at clinical trial, designed to induce brain repair following injury. In conclusion, early diagnosis enables early intervention, which improves child and parent outcomes. We now know which interventions provide the biggest gains and the information can be used to help inform parental decision making when designing treatment plans for their children.
Collapse
Affiliation(s)
- Iona Novak
- Cerebral Palsy Alliance, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia.
| | - Catherine Morgan
- Cerebral Palsy Alliance, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Wagenaar N, Martinez-Biarge M, van der Aa NE, van Haastert IC, Groenendaal F, Benders MJNL, Cowan FM, de Vries LS. Neurodevelopment After Perinatal Arterial Ischemic Stroke. Pediatrics 2018; 142:peds.2017-4164. [PMID: 30072575 DOI: 10.1542/peds.2017-4164] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Perinatal arterial ischemic stroke (PAIS) leads to cerebral palsy in ∼30% of affected children and has other neurologic sequelae. Authors of most outcome studies focus on middle cerebral artery (MCA) stroke without differentiating between site and extent of affected tissue. Our aim with this study was to report outcomes after different PAIS subtypes. METHODS Between 1990 and 2015, 188 term infants from 2 centers (London [n = 79] and Utrecht [n = 109]) had PAIS on their neonatal MRI. Scans were reevaluated to classify stroke territory and determine specific tissue involvement. At 18 to 93 (median 41.7) months, adverse neurodevelopmental outcomes were recorded as 1 or more of cerebral palsy, cognitive deficit, language delay, epilepsy, behavioral problems, or visual field defect. RESULTS The MCA territory was most often involved (90%), with posterior or anterior cerebral artery territory strokes occurring in 9% and 1%, respectively. Three infants died, and 24 had scans unavailable for reevaluation or were lost to follow-up. Of 161 infants seen, 54% had an adverse outcome. Outcomes were the same between centers. Main branch MCA stroke resulted in 100% adverse outcome, whereas other stroke subtypes had adverse outcomes in only 29% to 57%. The most important outcome predictors were involvement of the corticospinal tracts and basal ganglia. CONCLUSIONS Although neurodevelopmental outcome was adverse in at least 1 domain with main branch MCA stroke, in other PAIS subtypes outcome was favorable in 43% to 71% of children. Site and tissue involvement is most important in determining the outcome in PAIS.
Collapse
Affiliation(s)
- Nienke Wagenaar
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; and
| | | | - Niek E van der Aa
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; and
| | - Ingrid C van Haastert
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; and
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; and
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; and
| | - Frances M Cowan
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; and
| |
Collapse
|
14
|
Abstract
OBJECTIVE Here we review the current literature regarding visual outcome after perinatal and childhood stroke. BACKGROUND Visual deficits following stroke in adults are common and have been previously reviewed. Less is known about visual deficits following stroke in neonates and older children. Most of the literature regarding this subject has focused on preterm infants, or on other types of brain injury. This review summarizes the types of visual deficits seen in term infants following perinatal stroke and children following childhood stroke and predictors of outcome. This review suggests areas for future research. METHODS We performed Ovid MEDLINE searches regarding visual testing in children, vision after childhood stroke, neuroplasticity of vision, treatment of visual impairment after stroke, and driving safety concerns after stroke. RESULTS Visual field defects were the most commonly reported visual deficits after perinatal and childhood stroke. There is a significant lack of literature on this subject, and most is in the form of case reports and case series. Children can experience significant visual morbidity after stroke, and have the potential to show some recovery, but guidelines on assessment and treatment of this population are lacking. CONCLUSIONS There were limitations to this study, given the small amount of literature available. Although stroke in children can result in severe visual deficits, most children regain at least a portion of their vision. However, more research is needed regarding visual assessment of this population, long-term visual outcomes, specific predictors of recovery, and treatment options.
Collapse
Affiliation(s)
- Lauren B Crawford
- Division of Pediatric Neurology, Department of Neurology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, Indiana
| | - Meredith R Golomb
- Division of Pediatric Neurology, Department of Neurology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, Indiana.
| |
Collapse
|
15
|
Perinataler Schlaganfall und Sinusvenenthrombose: Klinik, Diagnostik und therapeutische Ansätze. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-016-0132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
de Blank P, Fisher MJ, Gittleman H, Barnholtz-Sloan JS, Badve C, Berman JI. Validation of an automated tractography method for the optic radiations as a biomarker of visual acuity in neurofibromatosis-associated optic pathway glioma. Exp Neurol 2017; 299:308-316. [PMID: 28587872 DOI: 10.1016/j.expneurol.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Fractional anisotropy (FA) of the optic radiations has been associated with vision deficit in multiple intrinsic brain pathologies including NF1 associated optic pathway glioma, but hand-drawn regions of interest used in previous tractography methods limit consistency of this potential biomarker. We created an automated method to identify white matter tracts in the optic radiations and compared this method to previously reported hand-drawn tractography. METHOD Automated tractography of the optic radiation using probabilistic streamline fiber tracking between the lateral geniculate nucleus of the thalamus and the occipital cortex was compared to the hand-drawn method between regions of interest posterior to Meyer's loop and anterior to tract branching near the calcarine cortex. Reliability was assessed by two independent raters in a sample of 20 healthy child controls. Among 50 children with NF1-associated optic pathway glioma, the association of FA and visual acuity deficit was compared for both tractography methods. RESULTS Hand-drawn tractography methods required 2.6±0.9min/participant; automated methods were performed in <1min of operator time for all participants. Cronbach's alpha was 0.83 between two independent raters for FA in hand-drawn tractography, but repeated automated tractography resulted in identical FA values (Cronbach's alpha=1). On univariate and multivariate analyses, FA was similarly associated with visual acuity loss using both methods. Receiver operator characteristic curves of both multivariate models demonstrated that both automated and hand-drawn tractography methods were equally able to distinguish normal from abnormal visual acuity. CONCLUSION Automated tractography of the optic radiations offers a fast, reliable and consistent method of tract identification that is not reliant on operator time or expertise. This method of tract identification may be useful as DTI is developed as a potential biomarker for visual acuity.
Collapse
Affiliation(s)
- Peter de Blank
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; University of Cincinnati, Department of Pediatrics, Cincinnati, OH, United States.
| | - Michael J Fisher
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Haley Gittleman
- University of Cincinnati, Department of Pediatrics, Cincinnati, OH, United States
| | | | - Chaitra Badve
- University of Cincinnati, Department of Pediatrics, Cincinnati, OH, United States
| | - Jeffrey I Berman
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|