1
|
Miller R, Unda SR, Holland R, Altschul DJ. Western Moyamoya Phenotype: A Scoping Review. Cureus 2021; 13:e19812. [PMID: 34956795 PMCID: PMC8693830 DOI: 10.7759/cureus.19812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Moyamoya, a rare angiographic finding, is characterized by chronic and progressive stenosis at the terminal end of the internal carotid artery, followed by collateralization of the cerebral vasculature at the base of the skull. Coined by Suzuki and Takaku in 1969, the term "moyamoya" means a "puff of smoke" in Japanese, a reference to the angiographic appearance of moyamoya collateralization. Moyamoya is most commonly found in East Asian countries, where much governmental and civilian effort has been expended to characterize this unique disease process. However, despite its rarity, the occurrence of moyamoya in Western countries is associated with significant divergence regarding incidence, gender, sex, age at diagnosis, clinical presentation, and outcomes. Here, we attempted to review the Western literature on moyamoya presentation using the PubMed database to characterize the Western phenotype of moyamoya. We were guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR). We reviewed papers generated from a search with keywords "moyamoya case report," those reported from a Western institution, and those reported on a relevant association. Our scoping review demonstrated various clinical associations with moyamoya. Moreover, we summarized the demographic profile and clinical symptomatology, as well as reported disease associations to better elucidate the Western phenotype of moyamoya.
Collapse
Affiliation(s)
- Raphael Miller
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - Santiago R Unda
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - Ryan Holland
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| | - David J Altschul
- Neurological Surgery, Montefiore/Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|
2
|
Cole JW, Adigun T, Akinyemi R, Akpa OM, Bell S, Chen B, Jimenez Conde J, Lazcano Dobao U, Fernandez I, Fornage M, Gallego-Fabrega C, Jern C, Krawczak M, Lindgren A, Markus HS, Melander O, Owolabi M, Schlicht K, Söderholm M, Srinivasasainagendra V, Soriano Tárraga C, Stenman M, Tiwari H, Corasaniti M, Fecteau N, Guizzardi B, Lopez H, Nguyen K, Gaynor B, O’Connor T, Stine OC, Kittner SJ, McArdle P, Mitchell BD, Xu H, Grond-Ginsbach C. The copy number variation and stroke (CaNVAS) risk and outcome study. PLoS One 2021; 16:e0248791. [PMID: 33872305 PMCID: PMC8055008 DOI: 10.1371/journal.pone.0248791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The role of copy number variation (CNV) variation in stroke susceptibility and outcome has yet to be explored. The Copy Number Variation and Stroke (CaNVAS) Risk and Outcome study addresses this knowledge gap. METHODS Over 24,500 well-phenotyped IS cases, including IS subtypes, and over 43,500 controls have been identified, all with readily available genotyping on GWAS and exome arrays, with case measures of stroke outcome. To evaluate CNV-associated stroke risk and stroke outcome it is planned to: 1) perform Risk Discovery using several analytic approaches to identify CNVs that are associated with the risk of IS and its subtypes, across the age-, sex- and ethnicity-spectrums; 2) perform Risk Replication and Extension to determine whether the identified stroke-associated CNVs replicate in other ethnically diverse datasets and use biomarker data (e.g. methylation, proteomic, RNA, miRNA, etc.) to evaluate how the identified CNVs exert their effects on stroke risk, and lastly; 3) perform outcome-based Replication and Extension analyses of recent findings demonstrating an inverse relationship between CNV burden and stroke outcome at 3 months (mRS), and then determine the key CNV drivers responsible for these associations using existing biomarker data. RESULTS The results of an initial CNV evaluation of 50 samples from each participating dataset are presented demonstrating that the existing GWAS and exome chip data are excellent for the planned CNV analyses. Further, some samples will require additional considerations for analysis, however such samples can readily be identified, as demonstrated by a sample demonstrating clonal mosaicism. CONCLUSION The CaNVAS study will cost-effectively leverage the numerous advantages of using existing case-control data sets, exploring the relationships between CNV and IS and its subtypes, and outcome at 3 months, in both men and women, in those of African and European-Caucasian descent, this, across the entire adult-age spectrum.
Collapse
Affiliation(s)
- John W. Cole
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | | | | | | - Steven Bell
- Unversity of Cambridge, Cambridge, England, United Kingdom
| | - Bowang Chen
- National Center for Cardiovascular Diseases, Beijing, China
| | | | - Uxue Lazcano Dobao
- IMIM-Hospital del Mar; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Israel Fernandez
- Institute of Research Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Myriam Fornage
- University of Texas Health Science at Houston, Institute of Molecular Medicine & School of Public Health, Houston, TX, United States of America
| | | | | | - Michael Krawczak
- Institute of Medical Statistics and Informatics, University of Kiel, Kiel, Germany
| | | | - Hugh S. Markus
- Unversity of Cambridge, Cambridge, England, United Kingdom
| | | | | | - Kristina Schlicht
- Institute of Medical Statistics and Informatics, University of Kiel, Kiel, Germany
| | - Martin Söderholm
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital Malmö and Lund, Lund, Sweden
| | | | | | | | - Hemant Tiwari
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Margaret Corasaniti
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Natalie Fecteau
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Beth Guizzardi
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Haley Lopez
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kevin Nguyen
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Brady Gaynor
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Timothy O’Connor
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - O. Colin Stine
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Steven J. Kittner
- Veterans Affairs Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Patrick McArdle
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Braxton D. Mitchell
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Huichun Xu
- University of Maryland School of Medicine, Baltimore, MD, United States of America
| | | |
Collapse
|
3
|
Aloui C, Guey S, Pipiras E, Kossorotoff M, Guéden S, Corpechot M, Bessou P, Pedespan JM, Husson M, Hervé D, Riant F, Kraemer M, Steffann J, Quenez O, Tournier-Lasserve E. Xq28 copy number gain causing moyamoya disease and a novel moyamoya syndrome. J Med Genet 2020; 57:339-346. [PMID: 31924698 DOI: 10.1136/jmedgenet-2019-106525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The molecular anomalies causing moyamoya disease (MMD) and moyamoya syndromes (MMS) are unknown in most patients. OBJECTIVE This study aimed to identify de novo candidate copy number variants (CNVs) in patients with moyamoya. METHODS Rare de novo CNVs screening was performed in 13 moyamoya angiopathy trios using whole exome sequencing (WES) reads depth data and whole genome high density SNP array data. WES and SNP array data from an additional cohort of 115 unrelated moyamoya probands were used to search for recurrence of these rare de novo CNVs. RESULTS Two de novo CNVs were identified in two unrelated probands by both methods and confirmed by qPCR. One of these CNVs, located on Xq28, was detected in two additional families. This interstitial Xq28 CNV gain is absent from curated gold standard database of control genomic variants and gnomAD databases. The critical region contains five genes, including MAMLD1, a major NOTCH coactivator. Typical MMD was observed in the two families with a duplication, whereas in the triplicated patients of the third family, a novel MMS associating moyamoya and various systemic venous anomalies was evidenced. CONCLUSION The recurrence of this novel Xq28 CNV, its de novo occurrence in one patient and its familial segregation with the affected phenotype in two additional families strongly suggest that it is pathogenic. In addition to genetic counselling application, its association with pulmonary hypertension is of major importance for clinical care. These data also provide new insights into the genomic architecture of this emblematic, non-atherosclerotic, large vessel disease.
Collapse
Affiliation(s)
- Chaker Aloui
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Stéphanie Guey
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France
| | - Eva Pipiras
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France.,Department of Cytogenetics, Embryology and Histology, AP-HP Hôpital Jean-Verdier, Bondy, France
| | - Manoelle Kossorotoff
- French Center for Pediatric Stroke, Department of Pediatric Neurology, APHP, University Hospital Necker-Enfants Malades, Paris, France
| | - Sophie Guéden
- Department of Pediatric Neurology, CHU Angers, Angers, France
| | - Michaelle Corpechot
- Service de Génétique Moléculaire Neurovasculaire, AP-HP Hôpital Lariboisière, Paris, France
| | - Pierre Bessou
- Service d'imagerie anténatale, de l'enfant et de la femme, Groupe Hospitalier Pellegrin-Hôpital des enfants, Bordeaux, France
| | - Jean-Michel Pedespan
- Service de neuropédiatrie, Groupe Hospitalier Pellegrin-Hôpital des enfants, Bordeaux, France
| | - Marie Husson
- Service de neuropédiatrie, Groupe Hospitalier Pellegrin-Hôpital des enfants, Bordeaux, France
| | - Dominique Hervé
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France.,Service de Neurologie, AP-HP Hôpital Lariboisière, Paris, France
| | - Florence Riant
- Service de Génétique Moléculaire Neurovasculaire, AP-HP Hôpital Lariboisière, Paris, France
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julie Steffann
- Université Paris Descartes, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Olivier Quenez
- Normandie University, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Elisabeth Tournier-Lasserve
- Université de Paris, NeuroDiderot, Inserm UMR1141, Paris, France .,Service de Génétique Moléculaire Neurovasculaire, AP-HP Hôpital Lariboisière, Paris, France
| |
Collapse
|
4
|
Affiliation(s)
| | - Philip Erhart
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Bowang Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Manja Kloss
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan T. Engelter
- Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Basel, Switzerland
- Department of Neurology and Stroke Center, University Hospital Basel, Basel, Switzerland
| | - John W. Cole
- Department of Neurology, Veterans Affairs Medical Center and University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|