1
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Wisse LE, Visser D, Ter Braak TJ, Bakkali A, Struys EA, Morrison CD, van der Knaap MS, Abbink TEM. Isocaloric low protein diet in a mouse model for vanishing white matter does not impact ISR deregulation in brain, but reveals ISR deregulation in liver. Nutr Neurosci 2020; 25:1219-1230. [PMID: 33236691 DOI: 10.1080/1028415x.2020.1846356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Vanishing white matter (VWM) is a genetic brain white matter disorder caused by mutations in eIF2B. eIF2B is central in the integrated stress response (ISR), during which its activity is inhibited by various cellular stresses. VWM is a chronic progressive disease with episodes of rapid neurological deterioration provoked by stresses. VWM patients and VWM mouse models show ISR deregulation in brain, correlating with chronic disease development. ISR inhibition ameliorates the chronic disease in VWM mice. The subacute deteriorations have not been modeled yet. We hypothesized that ISR activation could worsen disease progression in mice and model the episodic neurological deterioration.Method: We chose to activate the ISR by subjecting wild-type (wt) and VWM mice to an isocaloric low protein diet. This model would allow us to investigate the contribution of ISR activation in subacute decline in VWM.Results: We found that the low protein diet did not significantly affect amino acid levels nor ISR levels in wt and VWM mouse brain. Our study serendipitously led to the discovery of increased levels of glycine, asparagine and Fgf21 mRNA in VWM mouse brain irrespective of the dietary protein content. Strikingly, the ISR was not activated by the low protein diet in the liver of VWM in contrast to wt mice, due to a modest ISR deregulation in this organ.Discussion: A model for subacute neurological deterioration in VWM was not established. Possibly, ISR deregulation in VWM results in reduced ISR responsiveness.
Collapse
Affiliation(s)
- Lisanne E Wisse
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Visser
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Timo J Ter Braak
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Abdellatif Bakkali
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Truus E M Abbink
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Confirmation of Atypical Presentation With Nonprogressive Leukodystrophy in eIF2B-Related Disorders. Pediatr Neurol 2019; 100:97-99. [PMID: 31262560 DOI: 10.1016/j.pediatrneurol.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/03/2019] [Indexed: 11/20/2022]
|