1
|
Bolduc V, Sizov K, Brull A, Esposito E, Chen GS, Uapinyoying P, Sarathy A, Johnson KR, Bönnemann CG. Allele-specific CRISPR-Cas9 editing inactivates a single nucleotide variant associated with collagen VI muscular dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102269. [PMID: 39171142 PMCID: PMC11338111 DOI: 10.1016/j.omtn.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The application of allele-specific gene editing tools can expand the therapeutic options for dominant genetic conditions, either via gene correction or via allelic gene inactivation in situations where haploinsufficiency is tolerated. Here, we used allele-targeted CRISPR-Cas9 guide RNAs (gRNAs) to introduce inactivating frameshifting indels at an SNV in the COL6A1 gene (c.868G>A; G290R), a variant that acts as dominant negative and that is associated with a severe form of congenital muscular dystrophy. We expressed SpCas9 along with allele-targeted gRNAs, without providing a repair template, in primary fibroblasts derived from four patients and one control subject. Amplicon deep sequencing for two gRNAs tested showed that single-nucleotide deletions accounted for the majority of indels introduced. While activity of the two gRNAs was greater at the G290R allele, both gRNAs were also active at the wild-type allele. To enhance allele selectivity, we introduced deliberate additional mismatches to one gRNA. One of these optimized gRNAs showed minimal activity at the WT allele, while generating productive edits and improving collagen VI matrix in cultured patient fibroblasts. This study strengthens the potential of gene editing to treat dominant-negative disorders, but also underscores the challenges in achieving allele selectivity with gRNAs.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Sizov
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Astrid Brull
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Esposito
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grace S. Chen
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prech Uapinyoying
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
| | - Apurva Sarathy
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kory R. Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G. Bönnemann
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Aguti S, Cheng S, Ala P, Briggs S, Muntoni F, Zhou H. Strategies to improve the design of gapmer antisense oligonucleotide on allele-specific silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102237. [PMID: 38993932 PMCID: PMC11238192 DOI: 10.1016/j.omtn.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.
Collapse
Affiliation(s)
- Sara Aguti
- Neurodegenerative Diseases Department, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Shuzhi Cheng
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Pierpaolo Ala
- Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sean Briggs
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Francesco Muntoni
- Neurodegenerative Diseases Department, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Haiyan Zhou
- Genetics and Genomic Medicine Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| |
Collapse
|
3
|
Brull A, Sarathy A, Bolduc V, Chen GS, McCarty RM, Bönnemann CG. Optimized allele-specific silencing of the dominant-negative COL6A1 G293R substitution causing collagen VI-related dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102178. [PMID: 38617974 PMCID: PMC11015156 DOI: 10.1016/j.omtn.2024.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
Collagen VI-related dystrophies (COL6-RDs) are a group of severe, congenital-onset muscular dystrophies for which there is no effective causative treatment. Dominant-negative mutations are common in COL6A1, COL6A2, and COL6A3 genes, encoding the collagen α1, α2, and α3 (VI) chains. They act by incorporating into the hierarchical assembly of the three α (VI) chains and consequently produce a dysfunctional collagen VI extracellular matrix, while haploinsufficiency for any of the COL6 genes is not associated with disease. Hence, allele-specific transcript inactivation is a valid therapeutic strategy, although selectively targeting a pathogenic single nucleotide variant is challenging. Here, we develop a small interfering RNA (siRNA) that robustly, and in an allele-specific manner, silences a common glycine substitution (G293R) caused by a single nucleotide change in COL6A1 gene. By intentionally introducing an additional mismatch into the siRNA design, we achieved enhanced specificity toward the mutant allele. Treatment of patient-derived fibroblasts effectively reduced the levels of mutant transcripts while maintaining unaltered wild-type transcript levels, rescuing the secretion and assembly of collagen VI matrix by reducing the dominant-negative effect of mutant chains. Our findings establish a promising treatment approach for patients with the recurrent dominantly negative acting G293R glycine substitution.
Collapse
Affiliation(s)
- Astrid Brull
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apurva Sarathy
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Véronique Bolduc
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grace S. Chen
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Riley M. McCarty
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G. Bönnemann
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Bolduc V, Sizov K, Brull A, Esposito E, Chen GS, Uapinyoying P, Sarathy A, Johnson K, Bönnemann CG. Allele-specific CRISPR/Cas9 editing inactivates a single nucleotide variant associated with collagen VI muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586265. [PMID: 38585815 PMCID: PMC10996683 DOI: 10.1101/2024.03.22.586265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The application of allele-specific gene editing tools can expand the therapeutic options for dominant genetic conditions, either via gene correction or via allelic gene inactivation in situations where haploinsufficiency is tolerated. Here, we used allele-targeted CRISPR/Cas9 guide RNAs (gRNAs) to introduce inactivating frameshifting indels at a single nucleotide variant in the COL6A1 gene (c.868G>A; G290R), a variant that acts as dominant negative and that is associated with a severe form of congenital muscular dystrophy. We expressed spCas9 along with allele-targeted gRNAs, without providing a repair template, in primary fibroblasts derived from four patients and one control subject. Amplicon deep-sequencing for two gRNAs tested showed that single nucleotide deletions accounted for the majority of indels introduced. While activity of the two gRNAs was greater at the G290R allele, both gRNAs were also active at the wild-type allele. To enhance allele-selectivity, we introduced deliberate additional mismatches to one gRNA. One of these optimized gRNAs showed minimal activity at the WT allele, while generating productive edits and improving collagen VI matrix in cultured patient fibroblasts. This study strengthens the potential of gene editing to treat dominant-negative disorders, but also underscores the challenges in achieving allele selectivity with gRNAs.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Sizov
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Astrid Brull
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eric Esposito
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Grace S Chen
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prech Uapinyoying
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Center for Genetic Medicine Research, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA
| | - Apurva Sarathy
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kory Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carsten G Bönnemann
- Neurogenetics and Neuromuscular Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Savarese M, Välipakka S, Johari M, Hackman P, Udd B. Is Gene-Size an Issue for the Diagnosis of Skeletal Muscle Disorders? J Neuromuscul Dis 2021; 7:203-216. [PMID: 32176652 PMCID: PMC7369045 DOI: 10.3233/jnd-190459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes. Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases. The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Salla Välipakka
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
6
|
Bardakov SN, Deev RV, Magomedova RM, Umakhanova ZR, Allamand V, Gartioux C, Zulfugarov KZ, Akhmedova PG, Tsargush VA, Titova AA, Mavlikeev MO, Zorin VL, Chernets EN, Dalgatov GD, Konovalov FA, Isaev AA. Intrafamilial Phenotypic Variability of Collagen VI-Related Myopathy Due to a New Mutation in the COL6A1 Gene. J Neuromuscul Dis 2020; 8:273-285. [PMID: 33337382 PMCID: PMC8075389 DOI: 10.3233/jnd-200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A family of five male siblings (three survivors at 48, 53 and 58 years old; two deceased at 8 months old and 2.5 years old) demonstrating significant phenotypic variability ranging from intermediate to the myosclerotic like Bethlem myopathy is presented. Whole-exome sequencing (WES) identified a new homozygous missense mutation chr21:47402679 T > C in the canonical splice donor site of the second intron (c.227 + 2T>C) in the COL6A1 gene. mRNA analysis confirmed skipping of exon 2 encoding 925 amino-acids in 94–95% of resulting transcripts. Three sibs presented with intermediate phenotype of collagen VI-related dystrophies (48, 53 and 2.5 years old) while the fourth sibling (58 years old) was classified as Bethlem myopathy with spine rigidity. The two older siblings with the moderate progressive phenotype (48 and 53 years old) lost their ability to maintain a vertical posture caused by pronounced contractures of large joints, but continued to ambulate throughout life on fully bent legs without auxiliary means of support. Immunofluorescence analysis of dermal fibroblasts demonstrated that no type VI collagen was secreted in any of the siblings’ cells, regardless of clinical manifestations severity while fibroblast proliferation and colony formation ability was decreased. The detailed genetic and long term clinical data contribute to broadening the genotypic and phenotypic spectrum of COL6A1 related disease.
Collapse
Affiliation(s)
| | - Roman V Deev
- Human Stem Cells Institute, Moscow, Russia.,I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia
| | | | | | - Valérie Allamand
- Sorbonne Université UPMC Paris 06 -Inserm UMRS974, Research Center in Myology, Hospital Pitié-Salpêtrière, Paris, France
| | - Corine Gartioux
- Sorbonne Université UPMC Paris 06 -Inserm UMRS974, Research Center in Myology, Hospital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Angelina A Titova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Mikhail O Mavlikeev
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia
| | | | | | - Gimat D Dalgatov
- Scientific-Clinical Center of Otorhinolaryngology FMBA of Russia Moscow, Russia
| | | | | |
Collapse
|
7
|
Pastushkova LH, Rusanov VB, Goncharova AG, Brzhozovskiy AG, Kononikhin AS, Chernikova AG, Kashirina DN, Nosovsky AM, Baevsky RM, Nikolaev EN, Larina IM. Urine proteome changes associated with autonomic regulation of heart rate in cosmonauts. BMC SYSTEMS BIOLOGY 2019; 13:17. [PMID: 30836973 PMCID: PMC6399814 DOI: 10.1186/s12918-019-0688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background The strategy of adaptation of the human body in microgravity is largely associated with the plasticity of cardiovascular system regulatory mechanisms. During long-term space flights the changes in the stroke volume of the heart are observed, the heart rate decreases, the phase structure of cardiac cycle is readjusted The purpose of this work was to clarify urine proteome changes associated with the initial condition of the heart rate autonomic regulation mechanisms in cosmonauts who have participated in long space missions. Urine proteome of each cosmonaut was analyzed before and after space flight, depending on the initial parameters characterizing the regulatory mechanisms of the cardiovascular system. Results The proteins cadherin-13, mucin-1, alpha-1 of collagen subunit type VI (COL6A1), hemisentin-1, semenogelin-2, SH3 domain-binding protein, transthyretin and serine proteases inhibitors realize a homeostatic role in individuals with different initial type of the cardiovascular system regulation. The role of significantly changed urine proteins in the cardiovascular homeostasis maintenance is associated with complex processes of atherogenesis, neoangiogenesis, activation of calcium channels, changes in cell adhesion and transmembrane properties, changes in extracellular matrix, participation in protection from oxidative stress and leveling the effects of hypoxia. Therefore, the concentrations of these proteins significantly differ between groups with dominant parasympathetic and sympathetic influences. Conclusion The space flight induced urine proteome changes are significantly different in the groups identified by heart rate autonomic regulation peculiarities before space flight. All these proteins regulate the associated biological processes which affect the stiffness of the vascular wall, blood pressure level, the severity of atherosclerotic changes, the rate and degree of age-related involution of elastin and fibulin, age-related increase in collagen stiffness, genetically determined features of elastin fibers. The increased vascular rigidity (including the aorta) and of myocardium may be regarded as a universal response to various extreme factors. Significant differences in the semi-quantitative analysis of signal proteins between groups with different types of autonomic regulation are explained by a common goal: to ensure optimal adaptation regardless of age and of the genetically determined type of responses to the extreme environmental factors effects. Electronic supplementary material The online version of this article (10.1186/s12918-019-0688-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lyudmila H Pastushkova
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Vasily B Rusanov
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Anna G Goncharova
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Alexander G Brzhozovskiy
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia.,V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
| | - Anna G Chernikova
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Daria N Kashirina
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Andrey M Nosovsky
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Roman M Baevsky
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Evgeny N Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. .,Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia.
| | - Irina M Larina
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Chen A, Fertala A, Abboud J, Wang M, Rivlin M, Beredjiklian PK. The Molecular Basis of Genetic Collagen Disorders and Its Clinical Relevance. J Bone Joint Surg Am 2018; 100:976-986. [PMID: 29870450 DOI: 10.2106/jbjs.17.01136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Antonia Chen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrzej Fertala
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Abboud
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mark Wang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Rivlin
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pedro K Beredjiklian
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|