1
|
Yin L, Xu Y, Mu J, Leng Y, Ma L, Zheng Y, Li R, Wang Y, Li P, Zhu H, Wang D, Li J. CNKSR2 interactome analysis indicates its association with the centrosome/microtubule system. Neural Regen Res 2025; 20:2420-2432. [PMID: 39359098 PMCID: PMC11759008 DOI: 10.4103/nrr.nrr-d-23-01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 10/04/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00031/figure1/v/2024-09-30T120553Z/r/image-tiff The protein connector enhancer of kinase suppressor of Ras 2 (CNKSR2), present in both the postsynaptic density and cytoplasm of neurons, is a scaffolding protein with several protein-binding domains. Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders, particularly intellectual disability, although the precise mechanism involved has not yet been fully understood. Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane, thereby influencing synaptic signaling and the morphogenesis of dendritic spines. However, the function of CNKSR2 in the cytoplasm remains to be elucidated. In this study, we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2. Through a combination of bioinformatic analysis and cytological experiments, we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome. We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290. Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2. When we downregulated CNKSR2 expression in mouse neuroblastoma cells (Neuro 2A), we observed significant changes in the expression of numerous centrosomal genes. This manipulation also affected centrosome-related functions, including cell size and shape, cell proliferation, and motility. Furthermore, we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder. Our findings establish a connection between CNKSR2 and the centrosome, and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lin Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yu Zheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - Ruizhi Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, Shandong Province, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Posar A, Visconti P. Continuous Spike-Waves during Slow Sleep Today: An Update. CHILDREN (BASEL, SWITZERLAND) 2024; 11:169. [PMID: 38397281 PMCID: PMC10887038 DOI: 10.3390/children11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
In the context of childhood epilepsy, the concept of continuous spike-waves during slow sleep (CSWS) includes several childhood-onset heterogeneous conditions that share electroencephalograms (EEGs) characterized by a high frequency of paroxysmal abnormalities during sleep, which have negative effects on the cognitive development and behavior of the child. These negative effects may have the characteristics of a clear regression or of a slowdown in development. Seizures are very often present, but not constantly. The above makes it clear why CSWS have been included in epileptic encephalopathies, in which, by definition, frequent EEG paroxysmal abnormalities have an unfavorable impact on cognitive functions, including socio-communicative skills, causing autistic features, even regardless of the presence of clinically overt seizures. Although several decades have passed since the original descriptions of the electroclinical condition of CSWS, there are still many areas that are little-known and deserve to be further studied, including the EEG diagnostic criteria, the most effective electrophysiological parameter for monitoring the role of the thalamus in CSWS pathogenesis, its long-term evolution, the nosographic location of Landau-Kleffner syndrome, standardized neuropsychological and behavioral assessments, and pharmacological and non-pharmacological therapies.
Collapse
Affiliation(s)
- Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, Bologna University, 40139 Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, 40139 Bologna, Italy;
| |
Collapse
|
3
|
Dong Y, Lian R, Jin L, Zhao S, Tao W, Wang L, Li M, Jia T, Chen X, Cao S. Clinical and genetic analysis of Christianson syndrome caused by variant of SLC9A6: case report and literature review. Front Neurol 2023; 14:1152696. [PMID: 37213903 PMCID: PMC10196350 DOI: 10.3389/fneur.2023.1152696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Background Intellectual disability, X-linked, syndromic, Christianson type (MRXSCH, OMIM: 300243)-known as Christianson syndrome (CS)-is characterized by microcephaly, epilepsy, ataxia, and absence of verbal language ability. CS is attributed to mutations in the solute carrier family 9 member A6 gene (SLC9A6). Materials and methods This study reports the case of a boy 1 year and 3 months of age who was diagnosed with CS in our department. Genetic etiology was determined by whole-exome sequencing, and a minigene splicing assay was used to verify whether the mutation affected splicing. A literature review of CS cases was conducted and the clinical and genetic features were summarized. Results The main clinical manifestations of CS include seizures, developmental regression, and exceptional facial features. Whole-exome sequencing revealed a de novo splice variant in intron 11 (c.1366 + 1G > C) of SLC9A6. The mutation produced two abnormal mRNA products (verified by a minigene splicing assay), resulting in the formation of truncated protein. A total of 95 CS cases were identified in the literature, with various symptoms, such as delayed intellectual development (95/95, 100.00%), epilepsy (87/88, 98.86%), and absent verbal language (75/83, 90.36%). At least 50 pathogenic variants of SLC9A6 have been identified, with the highest frequency observed in exon 12. Conclusion Our patient is the first case with the c.1366 + 1G > C variant of SLC9A6 in CS. The summary of known cases can serve as a reference for analyzing the mutation spectrum and pathogenesis of CS.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou, China
- *Correspondence: Yan Dong,
| | - Ruofei Lian
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Jin
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenpeng Tao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchun Li
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuejing Chen
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shushi Cao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Santoro JD, Partridge R, Tanna R, Pagarkar D, Khoshnood M, Rehmani M, Kammeyer RM, Gombolay GY, Fisher K, Conravey A, El-Dahr J, Christy AL, Patel L, Manning MA, Van Mater H, Rafii MS, Quinn EA. Evidence of neuroinflammation and immunotherapy responsiveness in individuals with down syndrome regression disorder. J Neurodev Disord 2022; 14:35. [PMID: 35659536 PMCID: PMC9164321 DOI: 10.1186/s11689-022-09446-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background Down syndrome regression disorder is a symptom cluster consisting of neuropsychiatric regression without cause. This study evaluated the incidence of neurodiagnostic abnormalities in individuals with Down syndrome regression disorder and determined if abnormalities are indicative of responses to therapeutic intervention. Methods A retrospective, multi-center, case-control study was performed. Patients were required to have subacute onset and the presence of four of five symptom groups present (cognitive decline, expressive language, sleep derangement, loss of ability to perform activities of daily living, and/or a new movement disorder) and no other explanation for symptoms. Results Individuals with Down syndrome regression disorder were comparable to a cohort of individuals with only Down syndrome although had higher rates of autoimmune disease (p = 0.02, 95%CI 1.04–1.75). Neurodiagnostic abnormalities were found on EEG (n = 19, 26%), neuroimaging (n = 16, 22%), and CSF (n = 9, 17%). Pleocytosis was appreciated in five cases, elevated total protein in nine, elevated IgG index in seven, and oligoclonal bands in two. Testing within 2 years of symptom onset was more likely to have neurodiagnostic abnormalities (p = 0.01, 95%CI 1.64–37.06). In individuals with neurodiagnostic abnormalities, immunotherapy was nearly four times more likely to have a therapeutic effect than in those without neurodiagnostic abnormalities (OR 4.11, 95%CI 1.88–9.02). In those with normal neurodiagnostic studies (n = 43), IVIg was effective in 14 of 17 (82%) patients as well although other immunotherapies were uniformly ineffective. Conclusions This study reports the novel presence of neurodiagnostic testing abnormalities in individuals with Down syndrome regression disorder, providing credence to this symptom cluster potentially being of neurologic and/or neuroimmunologic etiology. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09446-w.
Collapse
Affiliation(s)
- Jonathan D Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA, 90027, USA. .,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| | | | - Runi Tanna
- Keck School of Medicine at the University of Southern California, Los Angeles, USA
| | - Dania Pagarkar
- Keck School of Medicine at the University of Southern California, Los Angeles, USA
| | - Mellad Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd, MS82, Los Angeles, CA, 90027, USA
| | - Mustafa Rehmani
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Ryan M Kammeyer
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Grace Y Gombolay
- Department of Neurology, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Emory University School of Medicine, Atlanta, GA, USA
| | - Kristen Fisher
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | | - Jane El-Dahr
- Section of Pediatric Allergy, Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Lina Patel
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Melanie A Manning
- Division of Medical Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Heather Van Mater
- Division of Rheumatology, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Michael S Rafii
- Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.,Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine at the University of Southern California, San Diego, CA, USA
| | - Eileen A Quinn
- Department of Pediatrics, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| |
Collapse
|
5
|
Liu X, Xie L, Fang Z, Jiang L. Case Report: Novel SLC9A6 Splicing Variant in a Chinese Boy With Christianson Syndrome With Electrical Status Epilepticus During Sleep. Front Neurol 2022; 12:796283. [PMID: 35095740 PMCID: PMC8795361 DOI: 10.3389/fneur.2021.796283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
We investigated the existence and potential pathogenicity of a SLC9A6 splicing variant in a Chinese boy with Christianson Syndrome (CS), which was reported for the first time in China. Trio whole-exome sequencing (WES) was performed in the proband and his parents. Multiple computer prediction tools were used to evaluate the pathogenicity of the variant, and reverse transcription-polymerase chain reaction (RT-PCR) analysis and cDNA sequencing were performed to verify the RNA splicing results. The patient presented with characteristic features of CS: global developmental delay, seizures, absent speech, truncal ataxia, microcephaly, ophthalmoplegia, smiling face and hyperkinesis with electrical status epilepticus during sleep (ESES) detected in an electroencephalogram (EEG). A SLC9A6 splicing variant was identified by WES and complete skipping of exon 10 was confirmed by RT-PCR. This resulted in altered gene function and was predicted to be pathogenic. ESES observed early in the disease course is considered to be a significant feature of CS with the SLC9A6 variant. Combined genetic analysis at both the DNA and RNA levels is necessary to confirm the pathogenicity of this variant and its role in the clinical diagnosis of CS.
Collapse
|
6
|
Zhang X, Wu X, Liu H, Song T, Jiang Y, He H, Yang S, Xie Y. Christianson syndrome: A novel splicing variant of SLC9A6 causes exon skipping in a Chinese boy and a literature review. J Clin Lab Anal 2021; 36:e24123. [PMID: 34791706 PMCID: PMC8761434 DOI: 10.1002/jcla.24123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Variants in the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+ ,K+ )/H+ exchanger 6 (NHE6) gene have been linked to epilepsy, speech loss, truncal ataxia, hyperkinesia, and postnatal microcephaly. METHODS In the present study, we evaluated genetic alterations in a 3-year-old Chinese boy displayed features of epilepsy, psychomotor retardation, microcephaly, low body weight, difficulty in feeding, excessive movement, attention loss, ataxia, and cerebellar atrophy and his healthy family using WES method. The identified variant was further confirmed by Sanger sequencing method. Finally, minigene assays were used to verify whether the novel SLC9A6 intronic variant influenced the normal splicing of mRNA. RESULTS We identified a novel hemizygous splicing variant [NM_001042537.1: c.1463-1G>A] in SLC9A6 by trio-based exome sequencing. The minigene expression in vitro confirmed the splicing variant altered a consensus splice acceptor site of SLC9A6 intron 11, resulting in skipping over exon 12. CONCLUSIONS Our finding extends the catalog of pathogenic intronic variants affecting SLC9A6 pre-mRNA splicing and provides a basis for the genetic diagnosis of CS.
Collapse
Affiliation(s)
- Xiaoge Zhang
- Department of pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Xiaofang Wu
- Department of pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Hongli Liu
- Department of pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Tingting Song
- Department of pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Yongsheng Jiang
- Department of pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Hanhan He
- Department of pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, Clinic of Oral Rare and Genetic Diseases, National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yun Xie
- Department of clinical laboratory, Northwest Women's and Children's Hospital, Xi'an, China
| |
Collapse
|
7
|
Gong P, Xue J, Jiao X, Zhang Y, Yang Z. Genetic Etiologies in Developmental and/or Epileptic Encephalopathy With Electrical Status Epilepticus During Sleep: Cohort Study. Front Genet 2021; 12:607965. [PMID: 33897753 PMCID: PMC8060571 DOI: 10.3389/fgene.2021.607965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Recently, the electroencephalogram pattern of electrical status epilepticus during sleep (ESES) had been reported in some genetic disorders, and most of them were noted with developmental and epileptic encephalopathy (DEE) or epileptic encephalopathy (EE). This study aimed to determine the genetic etiologies and clinical characteristics of ESES in DEE/EE. Methods We performed a cohort study in cases of DEE or EE with ESES. Tio-based genetic testing was performed in 74 cases and was analyzed to identify underlying variants. Results Pathogenic or likely pathogenic variants were identified in 17/74 cases, including KCNQ2 (n = 6), KCNA2 (n = 5), GRIN2A (n = 3), SLC9A6 (n = 1), HIVEP2 (n = 1), and RARS2 (n = 1). Eleven were boys. The median age at seizure onset was 6 months. ESES occurred at the mean age of 2.0 ± 1.2 years, predominant in the Rolandic region in 14 years. Twelve of 17 cases had the first stage of different epilepsy preceding ESES: 2/12 were diagnosed as Ohtahara syndrome, 2/12 were diagnosed as infantile spasms, 3/12 were diagnosed as DEE, and 5/12 were diagnosed as EE without the epileptic syndrome. Conclusion Monogenic variants explained over 20% of DEE/EE with ESES. ESES could be an age-related feature in genetic disorders and occurred after the first stage of different epilepsy. Both age-related factors and genetic etiology were suggested to play a role in the occurrence of ESES in genetic DEE/EE.
Collapse
Affiliation(s)
- Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiao Xue
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Arican P, Gencpinar P, Olgac Dundar N, Tekgul H. Electrical Status Epilepticus During Slow-wave Sleep (ESES): Current Perspectives. J Pediatr Neurosci 2021; 16:91-96. [PMID: 35018175 PMCID: PMC8706590 DOI: 10.4103/jpn.jpn_137_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Electrical status epilepticus during slow-wave sleep (ESES) is an epilepsy syndrome with sleep-induced epileptic discharges and acquired impairment of cognition or behavior. Since the disease’s original description in 1971, no clear consensus has emerged on diagnostic criteria or optimal treatment. The treatment of ESES can be challenging, often including numerous antiepileptic drugs, immunomodulatory agents, and even surgical interventions. There is little evidence to guide treatment because only retrospective studies and case reports on the efficacy of treatment of ESES are present in literature. In this paper, we aim to analyze the etiopathogenesis of ESES in the new genetic era and to evaluate the treatment modalities in accordance with the genetic data and electroclinic spectrum of ESES.
Collapse
Affiliation(s)
- Pinar Arican
- Department of Pediatric Neurology, Kahramanmaraş Necip Fazil Hospital, Kahramanmaraş, Turkey
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Izmir Katip Celebi University, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Izmir Katip Celebi University, Izmir, Turkey
| | - Hasan Tekgul
- Department of Pediatric Neurology, Ege University, Izmır, Turkey
| |
Collapse
|
9
|
A Novel WAC Loss of Function Mutation in an Individual Presenting with Encephalopathy Related to Status Epilepticus during Sleep (ESES). Genes (Basel) 2020; 11:genes11030344. [PMID: 32214004 PMCID: PMC7141116 DOI: 10.3390/genes11030344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/10/2023] Open
Abstract
WAC (WW Domain Containing Adaptor With Coiled-Coil) mutations have been reported in only 20 individuals presenting a neurodevelopmental disorder characterized by intellectual disability, neonatal hypotonia, behavioral problems, and mildly dysmorphic features. Using targeted deep sequencing, we screened a cohort of 630 individuals with variable degrees of intellectual disability and identified five WAC rare variants: two variants were inherited from healthy parents; two previously reported de novo mutations, c.1661_1664del (p.Ser554*) and c.374C>A (p.Ser125*); and a novel c.381+2T>C variant causing the skipping of exon 4 of the gene, inherited from a reportedly asymptomatic father with somatic mosaicism. A phenotypic evaluation of this individual evidenced areas of cognitive and behavioral deficits. The patient carrying the novel splicing mutation had a clinical history of encephalopathy related to status epilepticus during slow sleep (ESES), recently reported in another WAC individual. This first report of a WAC somatic mosaic remarks the contribution of mosaicism in the etiology of neurodevelopmental and neuropsychiatric disorders. We summarized the clinical data of reported individuals with WAC pathogenic mutations, which together with our findings, allowed for the expansion of the phenotypic spectrum of WAC-related disorders.
Collapse
|
10
|
Ikeda A, Yamamoto A, Ichikawa K, Tsuyusaki Y, Tsuji M, Iai M, Enomoto Y, Murakami H, Kurosawa K, Miyatake S, Matsumoto N, Goto T. Epilepsy in Christianson syndrome: Two cases of Lennox-Gastaut syndrome and a review of literature. Epilepsy Behav Rep 2019; 13:100349. [PMID: 31879735 PMCID: PMC6920258 DOI: 10.1016/j.ebr.2019.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 12/01/2019] [Indexed: 10/28/2022] Open
Abstract
Christianson syndrome (CS) is an X-linked intellectual disorder caused by mutations in the SLC9A6 gene. Clinical features of CS include an inability to speak, truncal ataxia, postnatal microcephaly, hyperkinesis, and epilepsy. Almost all patients with CS develop drug-resistant epilepsy-its most serious complication. We report two cases of CS with drug-resistant epilpesy associated with the Lennox-Gastaut syndrome (LGS). One patient experienced generalized tonic seizures since 9 months of age with cognitive regression, which evolved to include atonic seizures at the age of 7 years. Electroencephalography (EEG) showed generalized slow spike-wave complexes and generalized paroxysmal fast activity. Seizures remained drug-resistant despite multiple anti-seizure drugs. The second patient experienced generalized tonic seizures since the age of 17 months and arrested development. EEG showed generalized slow spike-wave complexes, with frequent atonic seizures since the age of 6 years. Electrical status epilepticus during slow-wave sleep (ESES) developed at the age of 7 years. Our cases illustrate that CS may cause LGS in addition to other developmental and epileptic encephalopathies of the neonatal and infantile period. We suggest that generalized tonic or tonic-clonic seizures and generalized slow spike-wave complexes in interictal EEG be included as potential electroclinical features of epilepsy in CS.
Collapse
Affiliation(s)
- Azusa Ikeda
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Ayako Yamamoto
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kazushi Ichikawa
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Megumi Tsuji
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizue Iai
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|