1
|
Jitpibull J, Ravangnam T, Petpiroon N, Kalaithong W, Boonpavanitchakul K, Aueviriyavit S, Kangwansupamonkon W. Novel bioink derived from low methoxyl pectin, gelatin and aloe vera as natural biomaterials for fabricating scaffolds encapsulated with living cells by 3D bioprinting. Int J Biol Macromol 2025; 310:143364. [PMID: 40268026 DOI: 10.1016/j.ijbiomac.2025.143364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/31/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
In recent years, 3D bioprinting has emerged as a promising technology for developing complex tissue structures, precisely controlled and designed via computer systems to create intricate organ model. This study focuses on the development of a bioink composed of living cells and hydrogel, specifically using low methoxyl pectin (LMP) combined with gelatin to enhance the properties of bioink for tissue engineering applications. Additionally, aloe vera (AV) dry gel was incorporated into the bioink to promote cell proliferation. The rheological properties of the developed hydrogels were evaluated, revealing shear-thinning and thixotropic behaviors suitable for 3D bioprinting applications. FT-IR and TGA analyses were performed to investigate the chemical and thermal properties of the hydrogels, indicating interactions between the constituents. The printability assessment demonstrated that the developed hydrogels (LMP/Gel, LMP/Gel-1AV, LMP/Gel-2AV) were able to maintain accurate shapes with over 90 % precision. Morphological observation of the dried hydrogel revealed a porous structure with interconnected pores, ensuring nutrient diffusion throughout the hydrogel. Furthermore, the developed bioinks demonstrated biodegradability, low toxicity, and the successful formation of an epidermal-like structure, further highlighting their potential for tissue engineering applications.
Collapse
Affiliation(s)
- Jirasak Jitpibull
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thunyaporn Ravangnam
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wichaya Kalaithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Kanittha Boonpavanitchakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Wiyong Kangwansupamonkon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; AFRS (T), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand.
| |
Collapse
|
2
|
Vinceković M, Živković L, Turkeyeva E, Mutaliyeva B, Madybekova G, Šegota S, Šijaković Vujičić N, Pustak A, Jurkin T, Kiš M, Kajić S. Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis. Gels 2024; 10:752. [PMID: 39590108 PMCID: PMC11593877 DOI: 10.3390/gels10110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The probiotic bacterium Bifidobacterium animalis subsp. lactis BB-12 (BB-12) was encapsulated in two composites, alginate/agar and alginate/agar/casein. The network structure and physicochemical properties of these composites are influenced by complex interactions, including hydrogen bonding, electrostatic forces between biopolymers, calcium ions, and the encapsulated bacteria. The composites demonstrated a granular surface, with the granules being spatially oriented on the alginate/agar/BB-12 surface and linearly oriented on the alginate/agar/casein/BB-12 surface. They possess a highly organized microparticle structure and exhibit viscoelastic solid-like behavior. The alginate/agar/BB-12 composite showed higher storage modulus, shear stress, and shear strain values, indicating enhanced stability in various physical environments. Both composites displayed good thermal stability, aligning with their rheological properties, confirming their well-ordered structures. Despite differences in composite structures, the release mechanism of bacteria is governed by Fickian diffusion through the composite matrix. Based on physicochemical properties, the alginate/agar/casein composite is recommended for dairy product fermentation, while the alginate/agar composite seems more suitable for oral use. These findings provide new insights into the interactions between bacterial cultures and alginate composite ingredients.
Collapse
Affiliation(s)
- Marko Vinceković
- Division of Agroecology, Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia;
| | - Lana Živković
- Division of Agroecology, Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia;
| | - Elmira Turkeyeva
- Biotechnology Department, M. Auezov South-Kazakhstan University, Tauke-Khan, Shymkent 160000, Kazakhstan; (E.T.); (B.M.)
| | - Botagoz Mutaliyeva
- Biotechnology Department, M. Auezov South-Kazakhstan University, Tauke-Khan, Shymkent 160000, Kazakhstan; (E.T.); (B.M.)
| | - Galiya Madybekova
- Chemistry Department, O. Zhanibekov South-Kazakhstan Pedagogical University, Baitursynov Street, 13, Shymkent 160000, Kazakhstan;
| | - Suzana Šegota
- Laboratory for Biocolloids and Surface Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia;
| | - Nataša Šijaković Vujičić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia;
| | - Anđela Pustak
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (A.P.); (T.J.)
| | - Tanja Jurkin
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia; (A.P.); (T.J.)
| | - Marta Kiš
- Faculty of Veterinary Medicine, University of Zagreb, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia
| | - Sanja Kajić
- Division of Agroecology, Department of Microbiology, University of Zagreb Faculty of Agriculture, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Yeerong K, Chantawannakul P, Anuchapreeda S, Juntrapirom S, Kanjanakawinkul W, Müllertz A, Rades T, Chaiyana W. Chitosan Alginate Nanoparticles of Protein Hydrolysate from Acheta domesticus with Enhanced Stability for Skin Delivery. Pharmaceutics 2024; 16:724. [PMID: 38931846 PMCID: PMC11206680 DOI: 10.3390/pharmaceutics16060724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to develop chitosan alginate nanoparticles (CANPs) for enhanced stability for dermal delivery of protein hydrolysate from Acheta domesticus (PH). CANPs, developed using ionotropic pre-gelation followed by the polyelectrolyte complex technique, were characterized for particle size, polydispersity index (PDI), and zeta potential. After the incorporation of PH into CANPs, a comprehensive assessment included encapsulation efficiency, loading capacity, morphology, chemical analyses, physical and chemical stability, irritation potential, release profile, skin permeation, and skin retention. The most optimal CANPs, comprising 0.6 mg/mL sodium alginate, 1.8 mg/mL calcium chloride, and 0.1 mg/mL chitosan, exhibited the smallest particle size (309 ± 0 nm), the narrowest PDI (0.39 ± 0.01), and pronounced negative zeta potential (-26.0 ± 0.9 mV), along with an encapsulation efficiency of 56 ± 2%, loading capacity of 2.4 ± 0.1%, release of 40 ± 2% after 48 h, and the highest skin retention of 12 ± 1%. The CANPs induced no irritation and effectively enhanced the stability of PH from 44 ± 5% of PH remaining in a solution to 74 ± 4% after three-month storage. Therefore, the findings revealed the considerable potential of CANPs in improving PH stability and skin delivery, with promising applications in cosmetics and related fields.
Collapse
Affiliation(s)
- Kankanit Yeerong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Phlu Ta Luang, Sattahip, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Phlu Ta Luang, Sattahip, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (A.M.); (T.R.)
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (A.M.); (T.R.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Fırlak Demirkan M, Öztürk D, Çifçibaşı ZS, Ertan F, Hardy JG, Nurşeval Oyunlu A, Darıcı H. Controlled Sr(ii) ion release from in situ crosslinking electroactive hydrogels with potential for the treatment of infections. RSC Adv 2024; 14:4324-4334. [PMID: 38304567 PMCID: PMC10828636 DOI: 10.1039/d3ra07061a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
The development of electrochemical stimuli-responsive drug delivery systems is of both academic and industrial interest due to the ease with which it is possible to trigger payload release, providing drug delivery in a controllable manner. Herein, the preparation of in situ forming hydrogels including electroactive polypyrrole nanoparticles (PPy-NPs) where Sr2+ ions are electrochemically loaded for electrically triggered release of Sr2+ ions is reported. The hydrogels were characterized by a variety of techniques including Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), cyclic voltammetry (CV), etc. The cytocompatibility towards human mesenchymal stem cells (MSCs) and fibroblasts were also studied. The Sr2+ ion loaded PEC-ALD/CS/PPy-NPs hydrogel showed no significant cytotoxicity towards human mesenchymal stem cells (MSCs) and fibroblasts. Sr2+ ions were electrochemically loaded and released from the electroactive hydrogels, and the application of an electrical stimulus enhanced the release of Sr2+ ions from gels by ca. 2-4 fold relative to the passive release control experiment. The antibacterial activity of Sr2+ ions against E. coli and S. aureus was demonstrated in vitro. Although these prototypical examples of Sr2+ loaded electroactive gels don't release sufficient Sr2+ ions to show antibacterial activity against E. coli and S. aureus, we believe future iterations with optimised physical properties of the gels will be capable of doing so.
Collapse
Affiliation(s)
| | - Dilek Öztürk
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | - Fatma Ertan
- Department of Chemistry, Gebze Technical University Gebze Kocaeli 41400 Turkey
| | | | | | - Hakan Darıcı
- HD Bioink Biotechnology Corp. İstanbul Turkey
- 3D Bioprinting Design & Prototyping R&D Center, Istinye University Istanbul Turkey
- Faculty of Medicine, Dept. of Histology & Embryology, Istinye University Istanbul Turkey
- Stem Cell, and Tissue Engineering R&D Center, Istinye University Istanbul Turkey
| |
Collapse
|
5
|
Zhou Y, Wang A, Yu Q, Tang Y, Yu Y. Induced Expression of the Acinetobacter sp. Oxa Gene in Lactobacillus acidophilus and Its Increased ZEN Degradation Stability by Immobilization. Toxins (Basel) 2023; 15:387. [PMID: 37368688 DOI: 10.3390/toxins15060387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN, ZEA) contamination in various foods and feeds is a significant global problem. Similar to deoxynivalenol (DON) and other mycotoxins, ZEN in feed mainly enters the body of animals through absorption in the small intestine, resulting in estrogen-like toxicity. In this study, the gene encoding Oxa, a ZEN-degrading enzyme isolated from Acinetobacter SM04, was cloned into Lactobacillus acidophilus ATCC4356, a parthenogenic anaerobic gut probiotic, and the 38 kDa sized Oxa protein was expressed to detoxify ZEN intestinally. The transformed strain L. acidophilus pMG-Oxa acquired the capacity to degrade ZEN, with a degradation rate of 42.95% at 12 h (initial amount: 20 μg/mL). The probiotic properties of L. acidophilus pMG-Oxa (e.g., acid tolerance, bile salt tolerance, and adhesion properties) were not affected by the insertion and intracellular expression of Oxa. Considering the low amount of Oxa expressed by L. acidophilus pMG-Oxa and the damage to enzyme activity by digestive juices, Oxa was immobilized with 3.5% sodium alginate, 3.0% chitosan, and 0.2 M CaCl2 to improve the ZEN degradation efficiency (from 42.95% to 48.65%) and protect it from digestive juices. The activity of immobilized Oxa was 32-41% higher than that of the free crude enzyme at different temperatures (20-80 °C), pH values (2.0-12.0), storage conditions (4 °C and 25 °C), and gastrointestinal simulated digestion conditions. Accordingly, immobilized Oxa could be resistant to adverse environmental conditions. Owing to the colonization, efficient degradation performance, and probiotic functionality of L. acidophilus, it is an ideal host for detoxifying residual ZEN in vivo, demonstrating great potential for application in the feed industry.
Collapse
Affiliation(s)
- Yuqun Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - An Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingzi Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuqian Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- South China Institute of Collaborative Innovation, Guangzhou 510640, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Yuanshan Yu
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Bayir E. Development of a three-dimensional in vitro blood-brain barrier using the chitosan-alginate polyelectrolyte complex as the extracellular matrix. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231157096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Polyelectrolyte complexes (PECs) consist of a spontaneous assembly of oppositely charged polysaccharides. PECs can be used to obtain a hydrogel tissue scaffold in tissue culture. In this study, it is aimed to use PEC as a blood-brain barrier (BBB) model scaffold. By mixing polycationic chitosan and polyanionic alginate solutions at a certain ratio it was obtained a 3D hydrogel scaffold and mimicked in vivo environment of the tissue. The PEC hydrogel scaffold’s chemical, physical, and mechanical characterizations were performed with FTIR, DSC, DMA, and Micro-CT analyses. In order to develop an in vitro BBB model, the human neuroblastoma cell line (SH-SY5Y) and mouse astrocyte cell line (C8-D1A) were mixed into a hydrogel, which is the abluminal side of the BBB. Human microvascular endothelial cells (HBEC-5i) were seeded on the hydrogel, and it was aimed to mimic the luminal side of the BBB. The characterization of the BBB model was determined by measuring the TEER, observation of the cell morphology with SEM, performing the permeability of Lucifer Yellow, and observation of tight junction proteins with immunofluorescence staining. As a result, HBEC-5i cells expressed tight junction proteins (ZO-1 and Claudin-5), showed TEER of 340 ± 22 Ω.cm2, and the Lucifer Yellow permeability of 7.4 × 10−7 ± 2.7 × 10−7 cm/s, which was suitable for use as an in vitro BBB model. Using a hydrogel PEC composed of chitosan and alginate as an extracellular matrix increased the direct interaction of endothelial cells, astrocytes, and neurons with each other and thus obtained a much less permeable model compared to other standard transwell models. Graphical abstract [Formula: see text]
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, Izmir, Turkey
| |
Collapse
|
7
|
Ahmed H, Khan EA, Stokke BT. Microfluidic dual picoinjection based encapsulation of hemoglobin in alginate microcapsules reinforced by a poly(L-lysine)- g-poly(ethylene glycol). SOFT MATTER 2022; 19:69-79. [PMID: 36468540 DOI: 10.1039/d2sm01045c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hemoglobin (Hb) encapsulation inside polysaccharide hydrogels has been considered a possible red blood cell (RBC) surrogate in transfusiology. Here we report on the microfluidic dual picoinjection assisted synthesis of Hb encapsulated alginate-poly(L-lysine)-g-poly(ethylene glycol) beads. This process is realized by the on-chip injections of blended Hb alginate solutions in emulsified aqueous calcium chloride (CaCl2) droplets followed by a subsequent injection of an aqueous PLL-g-PEG into each emulsified aqueous droplet. The proposed fabrication approach was realized using a flow-focusing and two picoinjection sites in a single PDMS device. Aqueous CaCl2 solution was emulsified and infused with Hb-alginate solution as the squeezed droplet passed through the first picoinjection site. The injection of PLL-g-PEG to reinforce the microgel and minimize the protein leaching was realized in the second picoinjection site located downstream from the first in the same microfluidic channel. In this process, monodisperse Hb-alginate-PLL-g-PEG particles with a diameter around the size of RBCs (9 μm) were obtained with around 80% of the 7.5 mg ml-1 Hb included in the injected aqueous alginate retaining in the obtained microparticles. Microparticles with Hb loading (32.8 pg per bead) and retention (28.8 pg per bead) over a week of storage at 4 °C are in accordance with the average amount of Hb per RBC. The Hb-alginate-PLL-g-PEG microbeads fabricated in the size range of RBCs are significant for further exploration.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
8
|
Alehosseini E, Shahiri Tabarestani H, Kharazmi MS, Jafari SM. Physicochemical, Thermal, and Morphological Properties of Chitosan Nanoparticles Produced by Ionic Gelation. Foods 2022; 11:foods11233841. [PMID: 36496649 PMCID: PMC9736386 DOI: 10.3390/foods11233841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan nanoparticles (CSNPs) can be widely used in the food, pharmaceutical, and cosmetic sectors due to their high performance, unique properties, and high surface area. In this research, CSNPs were produced by the ionic gelation method and using sodium tripolyphosphate (STPP) as an appropriate technique compared to the conventional methods. To evaluate the effects of various factors on the size, zeta potential (ZP), and optimal synthesis conditions, different concentrations of CS (1, 3, and 5 mg/mL), STPP (0.5, 0.75, and 1 mg/mL), and CS to STPP ratio (1:1, 3:1, and 5:1) were applied and optimized using the response surface methodology. The size of CSNPs was increased by using higher concentrations of CS, STPP, and CS/STPP ratios. The value of ZP was determined positive and it increased with increasing CS concentrations and CS/STPP ratios. ATR-FTIR spectra revealed interactions between CS and STPP. The DSC thermogram of CSNPs showed a double sharp endothermic peak at about 74.5 °C (ΔH = 122.00 J/g); further, the TGA thermograms indicated the total weight loss of STPP, CS, and CSNPs as nearly 3.30%, 63.60%, and 52.00%, respectively. The XRD data also revealed a greater chain alignment in the CSNPs. Optimized, the CSNPs can be used as promising carriers for bioactive compounds where they also act as efficient stabilizers in Pickering emulsions.
Collapse
Affiliation(s)
- Elham Alehosseini
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | - Hoda Shahiri Tabarestani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4918943464, Iran
- Correspondence: ; Tel.: +98-17-3242-3080
| |
Collapse
|
9
|
Preparation and Characterization of Methyl Jasmonate Microcapsules and Their Preserving Effects on Postharvest Potato Tuber. Molecules 2022; 27:molecules27154728. [PMID: 35897905 PMCID: PMC9330717 DOI: 10.3390/molecules27154728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 12/04/2022] Open
Abstract
Potato tubers tend to sprout during long-term storage, resulting in quality deterioration and shortened shelf life. Restrictions on the use of chlorpropham, the major potato sprout suppressant, have led to a need to seek alternative methods. In this study, the effects of methyl jasmonate (MeJA) solutions and MeJA microcapsules on sprouting and other key quality attributes of the potato tuber were investigated. The results showed that the MeJA solution was most effective at 300 μmol L−1 according to TOPSIS analysis. To prepare MeJA microcapsules, the optimal formulation is with 0.04% emulsifier, 2.5% sodium alginate, 0.5% chitosan and 3% CaCl2. Compared to 300 μmol L−1 MeJA solution, MeJA microcapsules consumed a lower dose of MeJA but demonstrated a better retaining effect on the overall quality attributes of potato tubers. MeJA microcapsules are promising agents for the preservation of postharvest potato tubers.
Collapse
|
10
|
Masoomi Dezfooli S, Bonnot C, Gutierrez‐Maddox N, Alfaro AC, Seyfoddin A. Chitosan coated alginate beads as probiotic delivery system for New Zealand black footed abalone (
Haliotis iris
). J Appl Polym Sci 2022. [DOI: 10.1002/app.52626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seyedehsara Masoomi Dezfooli
- Aquaculture Biotechnology Research Group, Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Chloe Bonnot
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Noemi Gutierrez‐Maddox
- School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Sciences Auckland University of Technology Auckland New Zealand
| |
Collapse
|
11
|
De Marchi JGB, Cé R, Onzi G, Alves ACS, Santarém N, Cordeiro da Silva A, Pohlmann AR, Guterres SS, Ribeiro AJ. IgG functionalized polymeric nanoparticles for oral insulin administration. Int J Pharm 2022; 622:121829. [PMID: 35580686 DOI: 10.1016/j.ijpharm.2022.121829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
The oral route is the best way to administer a drug; however, fitting peptide drugs in this route is a major challenge. In insulin cases, less than 0.5% of the administered dose achieves systemic circulation. Oral delivery by nanoparticles can increase insulin permeability across the intestinal epithelium while maintaining its structure and activity until release in the gut. This system can be improved to increase permeability across intestinal cells through active delivery. This study aimed to improve a nanoparticle formulation by promoting functionalization of its surface with immunoglobulin G to increase its absorption by intestinal epithelium. The characterization of formulations showed an adequate size and a good entrapment efficiency. Functionalized nanoparticles led to a desirable increase in insulin release time. Differential scanning calorimetry, infrared spectroscopy and paper chromatography proved the interactions of nanoparticle components. With immunoglobulin G, the nanoparticle size was slightly increased, which did not show aggregate formation. The developed functionalized nanoparticle formulation proved to be adequate to carry insulin and potentially increase its internalization by epithelial gut cells, being a promising alternative to the existing formulations for orally administered low-absorption peptides.
Collapse
Affiliation(s)
- J G B De Marchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal
| | - R Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A C S Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - N Santarém
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A Cordeiro da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - S S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal.
| |
Collapse
|
12
|
Morphological, rheological and thermal characteristics of biopolymeric microcapsules loaded with plant stimulants. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Eshaghi Gorji M, Li D. Photoinactivation of bacteriophage MS2, Tulane virus and Vibrio parahaemolyticus in oysters by microencapsulated rose bengal. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Bivalve molluscan shellfish such as oysters are important vectors for the transmission of foodborne pathogens including both viruses and bacteria. Photoinactivation provides a cold-sterilization option against the contamination as excited photosensitizers could transfer electronic energy to oxygen molecules producing reactive oxygen species such as singlet oxygen, leading to oxidative damage and death of the pathogens. However, the efficacy of photoinactivation is very often compromised by the presence of food matrix due to the non-selective reactions of short-lived singlet oxygen with the organic matters other than the target pathogens.
Materials and Methods
In order to address this issue, we encapsulated a food grade photosensitizer rose bengal (RB) in alginate microbeads. An extra coating of chitosan effectively prevented the release of RB from the microbeads in seawater, and more importantly, enhanced the selectivity of the photoinactivation via the electrostatic interactions between cationic chitosan and anionic charge of the virus particles (bacteriophage MS2 and Tulane virus) and the gram-negative bacteria Vibrio parahaemolyticus.
Results
The treatment of oysters with microencapsulated RB resulted in significantly higher reductions of MS2 phage, Tulane virus and V. parahaemolyticus than free RB and non-RB carrying microbeads (P < 0.05) tested with both in vitro and in vivo experimental set-ups. (4)
Conclusions
This study demonstrated a new strategy in delivering comprehensively formulated biochemical sanitizers in bivalve shellfish through their natural filter feeding activity and thereby enhancing the mitigation efficiency of foodborne pathogen contamination.
Collapse
Affiliation(s)
- Mohamad Eshaghi Gorji
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
14
|
Khoshdouni Farahani Z, Mousavi M, Seyedain Ardebili SM, Bakhoda H. Modification of sodium alginate by octenyl succinic anhydride to fabricate beads for encapsulating jujube extract. Curr Res Food Sci 2022; 5:157-166. [PMID: 35072103 PMCID: PMC8761605 DOI: 10.1016/j.crfs.2021.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 10/25/2022] Open
|
15
|
Pan H, Meng Q, Wang Q. Cellulose and chitosan based magnetic nanocomposite microspheres and its application. J Appl Polym Sci 2021. [DOI: 10.1002/app.51512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huiming Pan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qi Meng
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
16
|
Kaur I, Agnihotri S, Goyal D. Fabrication of chitosan-alginate nanospheres for controlled release of cartap hydrochloride. NANOTECHNOLOGY 2021; 33:025701. [PMID: 34614488 DOI: 10.1088/1361-6528/ac2d4c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Insecticide cartap hydrochloride (C) was fabricated as nanospheres by a two-step method of ionic gelification and polyelectrolyte complexation of alginate (ALG) and chitosan (CS) to undermine its adverse effects on environment. Nanospheres were characterized by field emission scanning electron microscope, Fourier transform infrared spectra and x-ray diffraction. The size of cartap hydrochloride entrapped chitosan alginate nanospheres (C-CS-ALG nps) was in range of 107.58-173.07 nm. Cartap hydrochloride nanospheres showed encapsulation efficiency of 76.19% and were stable for 30 d at ambient temperature. Release of cartap from nanospheres fitted best with first order linear kinetics followed by Hixson and Higuchi model suggesting super case II transport release. With the application of such control release nanoformulations, it is possible to reduce the frequency of field application of insecticide due to its slow release to the target organism, which is economical as well as environmentally safe.
Collapse
Affiliation(s)
- Ishtpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering & Technology (Deemed to be University), Patiala, 147001, Punjab, India
| | - Shekhar Agnihotri
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat-131028, Haryana, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering & Technology (Deemed to be University), Patiala, 147001, Punjab, India
| |
Collapse
|
17
|
Aljohani M, Alkabli J, Abualnaja MM, Alrefaei AF, Almehmadi SJ, Mahmoud MH, El-Metwaly NM. Electrospun AgNPs-polylactate nanofibers and their antimicrobial applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Farahmand A, Emadzadeh B, Ghorani B, Poncelet D. A comprehensive parametric study for understanding the combined millifluidic and dripping encapsulation process and characterisation of oil-loaded capsules. J Microencapsul 2021; 38:507-521. [PMID: 34543150 DOI: 10.1080/02652048.2021.1983053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM This study aimed to utilise and optimise the millifluidic and dripping encapsulation technique to develop and characterise the oil-core capsules. METHODS Sodium alginate with Tween-20 (continuous phase) and sunflower oil (dispersed phase) were used in millifluidic system. After determining the surface and interfacial tensions and flow behaviour parameters, flow rates of phases and concentrations of alginate and Tween were optimised by the Taguchi method. The flow regime of droplets was also evaluated. Optimised millicapsules were characterised concerning morphology, dimension, encapsulation efficiency, SEM, FTIR and, DSC results. RESULTS Dripping flow regime during droplet formation was observed. Reducing the interfacial tension between the continuous and dispersed phases resulted in about a 10.18% reduction in diameter. Optimised millicapsules depicted spherical shape (0.03 ± 0.01) with 3.95 ± 0.05 mm size and 97.5 ± 0.2% encapsulation efficiency. The FTIR and DSC results confirmed the entrapment of oil. CONCLUSION Millifluidic and dripping method effectively encapsulated sunflower oil in core-shell capsules.
Collapse
Affiliation(s)
- Atefeh Farahmand
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Denis Poncelet
- UMR CNRS 6144 GEPEA, Université de Nantes, Nantes, France
| |
Collapse
|
19
|
Le MCN, Xu K, Wang Z, Beverung S, Steward RL, Florczyk SJ. Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res A 2021; 109:1990-2000. [PMID: 33811775 DOI: 10.1002/jbm.a.37191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Breast cancer (BCa) is one of the most common cancers for women and metastatic BCa causes the majority of deaths. The extracellular matrix (ECM) stiffens during cancer progression and provides biophysical signals to modulate proliferation, morphology, and metastasis. Cells utilize mechanotransduction and integrins to sense and respond to ECM stiffness. Chitosan-alginate (CA) scaffolds have been used for 3D culture, but lack integrin binding ligands, resulting in round cell morphology and limited cell-material interaction. In this study, 2, 4, and 6 wt% CA scaffolds were produced to mimic the stages of BCa progression and evaluate the BCa response to CA scaffold stiffness. All three CA scaffold compositions highly porous with interconnected pores and scaffold stiffness increased with increasing polymer concentration. MDA-MB-231 (231) cells were cultured in CA scaffolds and 2D cultures for 7 d. All CA scaffold cultures had similar cell numbers at 7 d and the 231 cells formed clusters that increased in size during the culture. The 2 wt% CA had the largest clusters throughout the 7 d culture compared with the 4 and 6 wt% CA. The 231 cell migration was evaluated on 2D surfaces after 7 d culture. The 6 wt% CA cultured cells had the greatest migration speed, followed by 4 wt% CA, 2D cultures, and 2 wt% CA. These results suggest that 231 cells sensed the stiffness of CA scaffolds without the presence of focal adhesions. This indicates that a non-integrin-based mechanism may explain the observed mechanotransduction response.
Collapse
Affiliation(s)
- Minh-Chau N Le
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sean Beverung
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Robert L Steward
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Stephanie J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
20
|
Development of microcapsules using chitosan and alginate via W/O emulsion for the protection of hydrophilic compounds by comparing with hydrogel beads. Int J Biol Macromol 2021; 177:92-99. [PMID: 33609579 DOI: 10.1016/j.ijbiomac.2021.02.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022]
Abstract
It is a critical challenge to protect hydrophilic compounds in food or pharmaceutical applications due to their strong tendency to leak out of the capsules into the external aqueous phase. In this work, we developed an encapsulation system that can protect hydrophilic ingredients using polyelectrolyte complexes prepared with chitosan and alginate via water-in-oil (W/O) emulsion. Unlike the traditional preparation of hydrogel beads, in which one material was added dropwise to another that had an opposite charge, we prepared microcapsules by electrostatic interaction between the positively charged -NH3+ groups of chitosan and the negatively charged -COO- groups of alginate by W/O emulsion via ultrasonication, which prevented the formation of large complexes. The preparation conditions were optimized at an ultrasonic power of 375 W and alginate/chitosan ratio of 7:5, in which the alginate/chitosan microcapsules presented a good polydispersity index of 0.26 and zeta potential of -44.6 mV. The SEM and TEM images showed the microcapsule contained multiple, irregular, conglutinated spheres with a core and shell structure. High encapsulation efficiency and retention efficiency showed its potential to protect hydrophilic components from harsh environments. This method provides a simple route that can efficiently encapsulate a wide range of food or pharmaceutical hydrophilic ingredients.
Collapse
|
21
|
Essa EA, Elebyary TT, Abdelquader MM, El Maghraby GM, Elkordy AA. Smart liquids for oral controlled drug release: An overview of alginate and non-alginate based systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Masoomi Dezfooli S, Gutierrez-Maddox N, Alfaro AC, Seyfoddin A. Development of a microencapsulated probiotic delivery system for New Zealand black-footed abalone ( Haliotis iris). Pharm Dev Technol 2021; 26:390-402. [PMID: 33461379 DOI: 10.1080/10837450.2021.1876090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Conventional methods of probiotics delivery to farmed aquatic animals are not efficient due to loss of probiotic's viability before the probiotics can reach their site of action. This study aims to develop a microencapsulated probiotic delivery system for black-footed abalone (Haliotis iris). An emulsion technique was used to encapsulate probiotic bacteria within chitosan-coated alginate microparticles (CALG). The efficacy of CALG microparticles in delivering probiotics to abalone was assessed using ex vivo and in vivo experiments. Microparticles (113 ± 4 µm) with encapsulation efficiency of more than 75% were developed using an internal gelation formulation approach. The ex vivo release experiments revealed the lack of probiotic discharge in the first 6 h of incubating CALG in seawater followed by a slight bacterial release within the next 20 h. The exposure of CALG microparticles to simulated gastric and intestinal media showed a significantly higher release of encapsulated bacteria in the simulated intestinal medium. The results of feeding trial revealed that the number of probiotic bacteria in probiotic-fed abalone was significantly higher than the one in the control animals. The results suggest that CALG microparticles can be used as a controlled release system for delivering viable probiotic bacteria to the gastrointestinal tract of abalone.
Collapse
Affiliation(s)
- Seyedehsara Masoomi Dezfooli
- Faculty of Health and Environmental Sciences, Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Noemi Gutierrez-Maddox
- Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Andrea C Alfaro
- Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Faculty of Health and Environmental Sciences, Drug Delivery Research Group, School of Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
23
|
Siddiqui B, Rehman A, Haq IU, Ahmad NM, Ahmed N. Development, optimisation, and evaluation of nanoencapsulated diacerein emulgel for potential use in osteoarthritis. J Microencapsul 2020; 37:595-608. [DOI: 10.1080/02652048.2020.1829140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bazla Siddiqui
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asim.ur. Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nasir M. Ahmad
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
24
|
Kabir II, Sorrell CC, Mofarah SS, Yang W, Yuen ACY, Nazir MT, Yeoh GH. Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1801726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Imrana I. Kabir
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Sajjad S. Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Wei Yang
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Chun Yin Yuen
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Muhammad Tariq Nazir
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW, Australia
| |
Collapse
|
25
|
Ceylan O, Karakus H, Cicek H. Design and in vitro antibiofilm activity of propolis diffusion-controlled biopolymers. Biotechnol Appl Biochem 2020; 68:789-800. [PMID: 32701174 DOI: 10.1002/bab.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022]
Abstract
In this study, a novel pH-sensitive hydrogel beads that is based on gelatin/sodium alginate/chitosan (GEL/SA/CS) loaded with propolis ethanolic extracts (PE) were synthesized. The swelling behavior of GEL/SA/CS hydrogel beads was studied in different pH solutions and compared with unloaded CS (GEL/SA) hydrogel beads. The in vitro release studies have been revealed using four different pH (1.3, 5.0, 6.0, and 6.8), a saliva environment (pH 6.8), a simulated gastric fluid (SGF) (pH 1.3), and a simulated intestinal fluid (SIF) (pH 6.8) to simulate the physiological conditions in gastrointestinal (GI) tract. Propolis-loaded hydrogel beads were found to be stable at pH 1.3, 5.0, 6.0, simulated saliva, SGF, and SIF mediums, whereas the beads lose their stability at pH 6.8 buffer solution. Tested microorganisms displayed greater sensitivity to PE-loaded hydrogel beads compared with pure propolis. Contrary to antimicrobial activity results, antibiofilm activity results of PE-loaded GEL/SA and GEL/SA/CS hydrogel beads were found at low levels. According to the obtained results, the propolis-loaded GEL/SA/CS hydrogel beads synthesized within this study can be used in the treatment of GI tract diseases such as oral mucositis, gastric ulcer, ulcerative colitis, and GI cancer, as controlled releasing carriers of propolis.
Collapse
Affiliation(s)
- Ozgur Ceylan
- Department of Food Processing, Mugla Sitki Kocman University, Mugla, Turkey
| | - Hatice Karakus
- Department of Biology, Mugla Sitki Kocman University, Mugla, Turkey
| | - Huseyin Cicek
- Department of Chemistry, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
26
|
Zaeim D, Sarabi-Jamab M, Ghorani B, Kadkhodaee R, Liu W, Tromp RH. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Lipopolysaccharide derived alginate coated Hepatitis B antigen loaded chitosan nanoparticles for oral mucosal immunization. Int J Biol Macromol 2020; 154:466-476. [DOI: 10.1016/j.ijbiomac.2020.03.124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023]
|
28
|
Liu Z, Ye W, Zheng J, Wang Q, Ma G, Liu H, Wang X. Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. Regen Biomater 2020; 7:381-390. [PMID: 32793383 PMCID: PMC7415000 DOI: 10.1093/rb/rbaa009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 01/18/2023] Open
Abstract
Sequential administration and controlled release of different drugs are of vital importance for regulating cellular behaviors and tissue regeneration, which usually demands appropriate carriers like microspheres (MS) to control drugs releases. Electrospray has been proven an effective technique to prepare MS with uniform particle size and high drug-loading rate. In this study, we applied electrospray to simply and hierarchically fabricate sphere-in-sphere composite microspheres, with smaller poly(lactic-co-glycolic acid) MS (∼8–10 μm in diameter) embedded in a larger chitosan MS (∼250–300 μm in diameter). The scanning electron microscopy images revealed highly uniform MS that can be accurately controlled by adjusting the nozzle diameter or voltage. Two kinds of model drugs, bovine serum albumin and chlorhexidine acetate, were encapsulated in the microspheres. The fluorescence-labeled rhodamine-fluoresceine isothiocyanate (Rho-FITC) and ultraviolet (UV) spectrophotometry results suggested that loaded drugs got excellent distribution in microspheres, as well as sustained, slow release in vitro. In addition, far-UV circular dichroism and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results indicated original secondary structure and molecular weight of drugs after electrospraying. Generally speaking, our research proposed a modified hierarchically electrospraying technique to prepare sphere-in-sphere composite MS with two different drugs loaded, which could be applied in sequential, multi-modality therapy.
Collapse
Affiliation(s)
- Zhu Liu
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Weilong Ye
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Jingchuan Zheng
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Qindong Wang
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China.,Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Guowu Ma
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Huiying Liu
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic & Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 1 Qinghuayuan, Beijing 100084, China
| |
Collapse
|
29
|
Zhang R, Zhou L, Li J, Oliveira H, Yang N, Jin W, Zhu Z, Li S, He J. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109097] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Cadena-Velandia ZG, Montenegro-Alarcón JC, Marquínez-Casas X, Mora-Huertas CE. Quercetin-loaded alginate microparticles: A contribution on the particle structure. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Noreen A, Zia KM, Tabasum S, Khalid S, Shareef R. A review on grafting of hydroxyethylcellulose for versatile applications. Int J Biol Macromol 2020; 150:289-303. [PMID: 32004607 DOI: 10.1016/j.ijbiomac.2020.01.265] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/03/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023]
Abstract
Hydroxyethylcellulose (HEC) is a biocompatible, biodegradable, nontoxic, hydrophilic, non- ionic water soluble derivative of cellulose. It is broadly used in biomedical field, paint industry, as a soil amendment in agriculture, coal dewatering, cosmetics, absorbent pads, wastewater treatment and gel electrolyte membranes. Industrial uses of HEC can be extended by the its grafting with different polymers including poly acrylic acid, polyacrylamide, polylactic acid, polyethyleneglycol, polydimethyleamide, polycaprolactone, polylactic acid and dimethylamino ethylmethacrylate. This permits the formation of new biomaterials with improved properties and versatile applications. In this article, a comprehensive overview of graft copolymers of HEC with other polymers/compounds and their applications in drug delivery, stimuli sensitive hydrogels, super absorbents, personal hygiene products and coal dewatering is presented.
Collapse
Affiliation(s)
- Aqdas Noreen
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Khalid Mahmood Zia
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan.
| | - Shazia Tabasum
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Sana Khalid
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| | - Rahila Shareef
- Department of Applied Chemistry, Government College University, Faisalabad 38030-Pakistan
| |
Collapse
|
32
|
Li Y, Kohane DS. Microparticles. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Ćirić A, Krajišnik D, Čalija B, Đekić L. Biocompatible non-covalent complexes of chitosan and different polymers: Characteristics and application in drug delivery. ARHIV ZA FARMACIJU 2020. [DOI: 10.5937/arhfarm2004173q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Yu X, Wen T, Cao P, Shan L, Li L. Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. J Colloid Interface Sci 2019; 556:258-265. [DOI: 10.1016/j.jcis.2019.08.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
|
35
|
Li W, Liu L, Tian H, Luo X, Liu S. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydr Polym 2019; 223:115065. [DOI: 10.1016/j.carbpol.2019.115065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
36
|
Khanal S, Bhattarai SR, Sankar J, Bhandari RK, Macdonald JM, Bhattarai N. Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Sci Rep 2019; 9:13951. [PMID: 31562351 PMCID: PMC6765003 DOI: 10.1038/s41598-019-50380-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023] Open
Abstract
Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.
Collapse
Affiliation(s)
- Shalil Khanal
- 0000 0001 0287 4439grid.261037.1Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| | - Shanta R. Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemistry, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Biology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jagannathan Sankar
- 0000 0001 0287 4439grid.261037.1Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC USA
| | - Ramji K. Bhandari
- 0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jeffrey M. Macdonald
- 0000 0001 1034 1720grid.410711.2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA
| | - Narayan Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| |
Collapse
|
37
|
Yasmin F, Chen X, Eames BF. Effect of Process Parameters on the Initial Burst Release of Protein-Loaded Alginate Nanospheres. J Funct Biomater 2019; 10:E42. [PMID: 31527490 PMCID: PMC6787618 DOI: 10.3390/jfb10030042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
The controlled release or delivery of proteins encapsulated in micro/nanospheres is an emerging strategy in regenerative medicine. For this, micro/nanospheres made from alginate have drawn considerable attention for the use as a protein delivery device because of their mild fabrication process, inert nature, non-toxicity and biocompatibility. Though promising, one key issue associated with using alginate micro/nanospheres is the burst release of encapsulated protein at the beginning of the release, which may be responsible for exerting toxic side effects and poor efficiency of the delivery device. To address this issue, this study aimed to investigate the effect of process parameters of fabricating protein-loaded alginate nanospheres on the initial burst release. The alginate nanospheres were prepared via a combination of water-in-oil emulsification and the external gelation method and loaded with bovine serum albumin (BSA) as a model protein. The examined process parameters included alginate concentration, ionic cross-linking time and drying time. Once fabricated, the nanospheres were then subjected to the examination of BSA release, as well as the characterization of their morphology, size, and encapsulation efficiency. Our results revealed that by properly adjusting the process parameters, the initial burst release can be reduced by 13%. Taken together, our study demonstrates that regulating process parameters of fabricating alginate nanospheres is a possible means to reduce the initial burst release.
Collapse
Affiliation(s)
- Farhana Yasmin
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada.
| |
Collapse
|
38
|
Xu K, Ganapathy K, Andl T, Wang Z, Copland JA, Chakrabarti R, Florczyk SJ. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials 2019; 217:119311. [PMID: 31279100 DOI: 10.1016/j.biomaterials.2019.119311] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is a leading cause of death for men worldwide. Most PCa patients die from metastasis and bone is the most common metastatic site. Three dimensional (3D) porous chitosan-alginate (CA) scaffolds were developed for bone tissue engineering and demonstrated for culture of cancer cells and enrichment of cancer stem cells. However, only a single scaffold composition was studied. Three compositions of 3D porous CA scaffolds (2, 4, and 6 wt%) were used to investigate the effect of scaffold stiffness on PCa cell response with PC-3, C4-2B, and 22Rv1 cell lines. The PC-3 cells formed cell clusters while the C4-2B and 22Rv1 cells formed multicellular spheroids. The three cell lines demonstrated stiffness independent cell growth and expressed phenotypic PCa biomarkers. The osteoblastic PCa lines C4-2B and 22Rv1 mineralized in basal media, while the osteolytic PC-3 line did not, demonstrating that CA scaffold cultures revealed differences in PCa phenotypes. The CA scaffolds are a 3D culture platform that supports PCa growth and phenotypic expression with adjustable scaffold stiffness to mimic stages of metastatic progression. Further investigation of the scaffolds for co-culture of PCa cells with fibroblasts and primary PCa cell culture should be conducted to develop a platform for screening chemotherapies.
Collapse
Affiliation(s)
- Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA
| | - Kavya Ganapathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Stephen J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816-2455, USA; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
39
|
Efficacy of ketoconazole gel-flakes in treatment of vaginal candidiasis: Formulation, in vitro and clinical evaluation. Int J Pharm 2019; 567:118472. [PMID: 31252146 DOI: 10.1016/j.ijpharm.2019.118472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/09/2023]
Abstract
Candida albicans, as the main causative fungus of vaginal candidiasis, is currently a global issue of concern due to its high prevalence, biofilm formation and emergence of resistance. Ketoconazole (KTZ), an antifungal drug, which has poor water-solubility and penetration capacity, is ineffective against deep-seated Candida infection. Considering these issues, this work aimed to develop a novel multifunctional carrier for KTZ via encapsulation of KTZ/β-cyclodextrin (β-CD) co-ground mixture into chitosan/gellan gum gel-flakes (threadlike and polygonal structures). Analytical studies revealed existence of electrostatic-derived complexes between negatively charged gellan gum and positively charged chitosan. Gel-flakes were then loaded in in situ gel of pluronic F-127 (PF-127). Based on gelation temperature (Tgel), viscosity and release studies; selected formulation was further evaluated, showing significant in vitro anti-candida activity. Despite reduced dosage regimen (50 mg/daily/three days), KTZ flakes in situ gel was as effective as Gynoconazol vaginal cream® (80 mg terconazole/daily/three days) in improving patient complaints and Candida eradication. Multifunctionality of KTZ carrier was based on efficient spreading and coating of the vagina due to free-flowing properties during application, flakes entanglement within folded vaginal epithelia, sustained release and increased penetration capacity of KTZ to reach deep-seated infections. In conclusion, flakes in situ gel could be considered as a highly promising KTZ delivery option for treatment of vaginal candidiasis.
Collapse
|
40
|
Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther Deliv 2019; 10:281-293. [DOI: 10.4155/tde-2019-0019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: Our aim was to develop and characterize a nanogel formulation containing both glibenclamide and quercetin and to explore the permeation profile of this combination. Methods: Drug-loaded nanogel was prepared by ionic gelation. In addition, optimum encapsulation efficiencies of glibenclamide and quercetin were also obtained. The average nanoparticle size at optimum conditions was determined by Zetasizer. Results: The particle size of the nanogel was found to be 370.4 ± 4.78 nm with a polydispersity index of 0.528 ± 0.04, while the λ potential was positive in a range of 17.6 to 24.8 mV. The percentage cumulative drug release also showed favorable findings. Conclusion: The chitosan nanogel could be a potential alternative for delivering glibenclamide and quercetin through skin.
Collapse
|
41
|
Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release 2019; 295:174-186. [DOI: 10.1016/j.jconrel.2018.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023]
|
42
|
Rosch JG, Brown AL, DuRoss AN, DuRoss EL, Sahay G, Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. NANOSCALE RESEARCH LETTERS 2018; 13:350. [PMID: 30392055 PMCID: PMC6215536 DOI: 10.1186/s11671-018-2748-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 05/21/2023]
Abstract
Crosslinked-biopolymer nanoparticles provide a convenient platform for therapeutic encapsulation and delivery. Here, we present a robust inverse-micelle process to load water-soluble drugs into a calcium-crosslinked alginate matrix. The utility of the resulting nanoalginate (NALG) carriers was assessed by a doxorubicin (DOX) formulation (NALG-DOX) and evaluating its potency on breast cancer cells (4T1). This facile synthesis process produced doxorubicin-containing particles of ~ 83 nm by hydrodynamic size and zeta potential ~ 7.2 mV. The cyclohexane/dodecylamine microemulsion yielded uniform and spherical nanoparticles as observed by electron microscopy. The uptake of the drug from the NALG-DOX formulation in 4T1 cells was observed by fluorescence microscopy employing doxorubicin's inherent fluorescence. Therapeutic efficacy of the NALG-DOX against 4T1 cells was demonstrated qualitatively through a LIVE/DEAD fluorescence assay and quantitatively via cell viability assay (Alamar Blue). In addition, IC50 values were determined, with encapsulated doxorubicin having a slightly higher value. No toxicity of the empty NALG carrier was observed. Overall, these results demonstrate the utility of this synthesis process for encapsulation of hydrophilic therapeutics and NALG to function as a drug carrier.
Collapse
Affiliation(s)
- Justin G. Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Anna L. Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Allison N. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Erin L. DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR 97201 USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201 USA
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239 USA
| |
Collapse
|
43
|
Nikoo AM, Kadkhodaee R, Ghorani B, Razzaq H, Tucker N. Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. Int J Biol Macromol 2018; 116:208-216. [DOI: 10.1016/j.ijbiomac.2018.04.167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/27/2018] [Accepted: 04/29/2018] [Indexed: 12/15/2022]
|
44
|
Mohammadi N, Ehsani MR, Bakhoda H. Development of caffeine-encapsulated alginate-based matrix combined with different natural biopolymers, and evaluation of release in simulated mouth conditions. FLAVOUR FRAG J 2018. [DOI: 10.1002/ffj.3452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nima Mohammadi
- Department of Food Science and Technology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Mohammad Reza Ehsani
- Department of Food Science and Technology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Hossein Bakhoda
- Department of Agricultural Mechanization, Science and Research Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
45
|
Nur M, Vasiljevic T. Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E79. [PMID: 29304023 PMCID: PMC5793577 DOI: 10.3390/ma11010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
Nanoparticles or microparticles created by physical complexation between two polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan can be potential candidates for this purpose. In this research, insulin particles were prepared by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration relationship involving polyelectrolytes offering individual particle size and zeta potential was assessed by zetasizer and scanning electron microscopy (SEM). Insulin-tragacanth interactions at varying pH (3.7, 4.3, 4.6, or 6), and concentration (0.1%, 0.5%, or 1% w/w) were evaluated by differential scanning calorimetry (DSC) and ATR Fourier transform infrared (ATR-FTIR) analysis. Individual and smaller particles, approximately 800 nm, were acquired at pH 4.6 with 0.5% of tragacanth. The acid gelation test indicated that insulin could be entrapped in the physical hydrogel of tragacanth. DSC thermograms of insulin-tragacanth showed shifts on the same unloaded tragacanth peaks and suggested polyelectrolyte-protein interactions at a pH close to 4.3-4.6. FTIR spectra of tragacanth-insulin complexes exhibited amide absorption bands featuring in the protein spectra and revealed the creation of a new chemical substance.
Collapse
Affiliation(s)
- Mokhamad Nur
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia.
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia.
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia.
| |
Collapse
|
46
|
Thaya R, Vaseeharan B, Sivakamavalli J, Iswarya A, Govindarajan M, Alharbi NS, Kadaikunnan S, Al-anbr MN, Khaled JM, Benelli G. Synthesis of chitosan-alginate microspheres with high antimicrobial and antibiofilm activity against multi-drug resistant microbial pathogens. Microb Pathog 2018; 114:17-24. [DOI: 10.1016/j.micpath.2017.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022]
|
47
|
Dehghan S, Kheiri MT, Abnous K, Eskandari M, Tafaghodi M. Preparation, characterization and immunological evaluation of alginate nanoparticles loaded with whole inactivated influenza virus: Dry powder formulation for nasal immunization in rabbits. Microb Pathog 2017; 115:74-85. [PMID: 29223454 DOI: 10.1016/j.micpath.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Abstract
It has become important to explore more efficient and feasible influenza vaccines, since epidemics of influenza virus cause hundreds of thousands of deaths all around the world. Improving immunogenicity of parentral influenza vaccines has given rise to mucosal delivery routes. In this study, alginate nanoparticles (NPs) were efficiently synthetized by ionic gelation method and influenza virus and CpG ODN or Quillaja Saponin (QS) adjuvants were actively incorporated into alginate NPs. The prepared particles were evaluated for both humoral and cellular immune responses in rabbits' nostrils. The vaccination started with a prime dose and followed by three boosters (two intranasal (IN) on days 45 and 60 and the last dose, intramuscular (IM) on day 75). HAI titer had increased in all the samples; although, only in the group received WV + CPG suspension reached to the protective HAI titer. All the immunized rabbits elicited significantly high sIgA levels on day 75, compared to the negative and the IM groups. At the end of the study, IN administration of CpG ODN adjuvant with virus antigen induced higher IgG level than the groups vaccinated with alginate NPs with or without CpG ODN (P < 0.001). As for the cellular immunity, CpG ODN was capable of inducing significant levels of IL-4 and TNF-α, either through inoculation along with the virus suspension or as incorporated in alginate NPs. According to the obtained data, CpG ODN adjuvant showed higher immunogenic potential as part of a vaccine delivery system than QS. Moreover, applying alginate polymer as a nasal delivery system carrier was not deemed immunogenic against influenza whole virus.
Collapse
Affiliation(s)
- Solmaz Dehghan
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Khalil Abnous
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Sciences Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Eskandari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Khan S, Warade S, Singhavi DJ. Improvement in Ocular Bioavailability and Prolonged Delivery of Tobramycin Sulfate Following Topical Ophthalmic Administration of Drug-Loaded Mucoadhesive Microparticles Incorporated in Thermosensitive In Situ Gel. J Ocul Pharmacol Ther 2017; 34:287-297. [PMID: 29211593 DOI: 10.1089/jop.2017.0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Conventional topical delivery in hyperacute bacterial conjunctivitis and endophthalmitis is associated with low drug bioavailability due to rapid precorneal clearance. Hence, in the present investigation, an attempt has been made to enhance ocular bioavailability of tobramycin sulfate by formulating drug-loaded microparticles dispersed in thermosensitive in situ gel. METHODS Microparticles prepared by emulsion-ionic gelation technique were characterized for drug loading, entrapment efficiency, particle size, surface morphology, and in vitro drug release. Consequently microparticles (F2 prepared with 1.5%w/v chitosan, 0.2%w/v tripolyphosphate, and drug, 30%w/w of polymer) with high drug loading and encapsulation efficiency were dispersed in thermosensitive in situ gel containing poloxamer 407 and varying percentage of chitosan. In situ gel containing drug-loaded microparticles were evaluated for gelation temperature, rheological behavior, mucoadhesive strength, in vitro drug release, in vitro permeation, ocular irritation, and bioavailability in aqueous humor of rabbits. RESULTS Formulation containing 17%w/v poloxamer 407 and 0.5%w/v chitosan (P2) gelled at 32°C ± 1.5°C gave pseudoplastic behavior. In vitro permeability of tobramycin from the formulation P2 was found 2-folds greater than eye drops. It also gave significantly higher aqueous humor concentration of tobramycin compared with eye drops with no signs of ocular irritation. CONCLUSION Thus, the formulation possesses high potential for treating ocular infections.
Collapse
Affiliation(s)
- Shagufta Khan
- Institute of Pharmaceutical Education and Research , Wardha, Maharashtra, India
| | - Sonali Warade
- Institute of Pharmaceutical Education and Research , Wardha, Maharashtra, India
| | - Dilesh J Singhavi
- Institute of Pharmaceutical Education and Research , Wardha, Maharashtra, India
| |
Collapse
|
49
|
A novel lignin-based nanofibrous dressing containing arginine for wound-healing applications. Drug Deliv Transl Res 2017; 8:111-122. [DOI: 10.1007/s13346-017-0441-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Yadav SK, Khan G, Bonde GV, Bansal M, Mishra B. Design, optimization and characterizations of chitosan fortified calcium alginate microspheres for the controlled delivery of dual drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1180-1193. [PMID: 28830256 DOI: 10.1080/21691401.2017.1366331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Periodontal disease is chronic, highly prevalent infectious disease that requires prolonged and controlled delivery of antimicrobial agents into pockets. To achieve this objective, dual antimicrobials encapsulated chitosan fortified calcium alginate (CS-Ca-SA) microspheres were formulated by application of Plackett-Burman factorial design. The microspheres were optimized for particle size (PS), entrapment efficiency (EE) and drug release. The optimized microspheres presented average PS of 74-461 µm and EE of 62.45-86.20% with controlled drug delivery for 120 hours. FTIR disclosed successful complexation between SA and CS. DSC and XRD studies showed changes in the crystallinity of drugs in microspheres. Shape factor and SEM demonstrated spherical to pear-shaped microspheres. Release exponent >0.43 and high diffusion coefficients revealed non-Fickian-based diffusion-limited drug release. CS-Ca-SA microspheres exhibited surface pH of 6.5 ± 0.5, moderate swelling, less erosion and improved mucoadhesion over Ca-SA microspheres. Also, significant antimicrobial activity against Escherichia coli and Staphylococcus aureus and cytocompatibility with L929 cell lines were observed. Further, microspheres exhibited long-term stability on refrigeration. The outcomes of study supported the potential of dual polymer and dual drug-based biodegradable, stable, non-toxic, mucoadhesive, controlled and prolonged drug release microspheres as more patient compliant by administration into periodontal pockets for the management of periodontal disease.
Collapse
Affiliation(s)
- Sarita Kumari Yadav
- a Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi , India.,b Moti Lal Nehru Medical College , Allahabad , India
| | - Gayasuddin Khan
- a Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi , India
| | - Gunjan Vasant Bonde
- a Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi , India
| | - Monika Bansal
- c Faculty of Dental Sciences , Institute of Medical Sciences, Banaras Hindu University , Varanasi , India
| | - Brahmeshwar Mishra
- a Department of Pharmaceutics , Indian Institute of Technology, Banaras Hindu University , Varanasi , India
| |
Collapse
|