1
|
Anderson JT, Hu S, Fu Q, Baker SD, Sparreboom A. Role of equilibrative nucleoside transporter 1 (ENT1) in the disposition of cytarabine in mice. Pharmacol Res Perspect 2019; 7:e00534. [PMID: 31832201 PMCID: PMC6887677 DOI: 10.1002/prp2.534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022] Open
Abstract
Cytarabine (Ara-C) is a nucleoside analog used in the treatment of acute myeloid leukemia (AML). Despite the many years of clinical use, the identity of the transporter(s) involved in the disposition of Ara-C remains poorly studied. Previous work demonstrated that concurrent administration of Ara-C with nitrobenzylmercaptopurine ribonucleoside (NBMPR) causes an increase in Ara-C plasma levels, suggesting involvement of one or more nucleoside transporters. Here, we confirmed the presence of an NMBPR-mediated interaction with Ara-C resulting in a 2.5-fold increased exposure. The interaction was unrelated to altered blood cell distribution, and subsequent studies indicated that the disposition of Ara-C was unaffected in mice with a deficiency of postulated candidate transporters, including ENT1, OCTN1, OATP1B2, and MATE1. These studies indicate the involvement of an unknown NBMPR-sensitive Ara-C transporter that impacts the pharmacokinetic properties of this clinically important agent.
Collapse
Affiliation(s)
- Jason T. Anderson
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Shuiying Hu
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Qiang Fu
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| | - Alex Sparreboom
- Division of Pharmaceutics and PharmacologyCollege of Pharmacy and Comprehensive Cancer CenterThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
2
|
Wang H, Jones AK, Dvorak CC, Huang L, Orchard P, Ivaturi V, Long-Boyle J. Population Pharmacokinetics of Clofarabine as Part of Pretransplantation Conditioning in Pediatric Subjects before Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1603-1610. [PMID: 31002993 DOI: 10.1016/j.bbmt.2019.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/10/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Abstract
The primary objective of this work was to characterize the pharmacokinetics (PK) of systemic clofarabine (clo-fara) in pediatric allogeneic hematopoietic cell transplantation (HCT) recipients receiving either nucleoside monotherapy or a dual nucleoside analog preparative regimen. Fifty-one children (median age, 4.9 years; range, .25 to 14.9 years) undergoing allogeneic HCT for a variety of malignant and nonmalignant disorders underwent PK assessment. Plasma samples were collected over the 4 to 5 days of clo-fara treatment and quantified for clo-fara, using a validated liquid chromatography/tandem mass spectrometry assay. Nonlinear mixed-effects modeling was used to develop the population PK model, including identification of covariates that influenced drug disposition. In agreement with previously published models, a 2-compartment PK model with first-order elimination best described the PK of clo-fara. Final parameter estimates for clo-fara were consistent with previous reports and were as follows: clearance (CL), 23 L/h/15 kg; volume of the central compartment, 42 L/15 kg; volume of peripheral compartment, 47 L/15 kg; and intercompartmental CL, 9.8 L/h/15 kg. Unexplained variability was acceptable at 33%, and the additive residual error (reflective of the assay) was estimated to be 0.36 ng/mL. Patient-specific factors significantly impacting clo-fara CL included actual body weight and age. The covariate model was able to estimate clo-fara CL with good precision in children spanning a wide age range from infancy to early adulthood and demonstrates the need for variable dosing in children of different ages. For example, the dose required for a 6-month and 1-year old was approximately 43% and 17% lower, respectively, than the typical 40 mg/m2dose to achieve the median AUC0-24of 1.04 mg·h/L in the study population. Despite the known renal elimination of clo-fara, no significant clinical parameters for renal function were retained in the final model (P> .05). Coadministration of fludarabine with clo-fara did not alter the CL of clo-fara (P> .05). These results will help inform individualized dosing strategies for clo-fara to improve clinical outcomes and limit drug-related adverse events in children undergoing HCT.
Collapse
Affiliation(s)
- Hechuan Wang
- Center for Translational Medicine, School of Pharmacy, University of Maryland Baltimore, Maryland
| | - Aksana K Jones
- Center for Translational Medicine, School of Pharmacy, University of Maryland Baltimore, Maryland
| | - Christopher C Dvorak
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, California
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| | - Paul Orchard
- Department of Pediatrics, University of Minnesota, Masonic Children's Hospital, Minneapolis, Minnesota
| | - Vijay Ivaturi
- Center for Translational Medicine, School of Pharmacy, University of Maryland Baltimore, Maryland.
| | - Janel Long-Boyle
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, California; Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California
| |
Collapse
|
3
|
Guan YQ, Han Z, Li X, You C, Tan X, Lv H, Zhang X. A cheap metal for a challenging task: nickel-catalyzed highly diastereo- and enantioselective hydrogenation of tetrasubstituted fluorinated enamides. Chem Sci 2019; 10:252-256. [PMID: 30746080 PMCID: PMC6335620 DOI: 10.1039/c8sc04002h] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Nickel-catalyzed asymmetric hydrogenation of challenging tetrasubstituted fluorinated enamides has been achieved, affording chiral α-fluoro-β-amino esters in high yields with excellent diastereo- and enantioselectivities (up to 98% yield, >99 : 1 dr, up to >99% ee). Deuterium-labeling experiments and control experiments were conducted to probe the mechanism, and the results indicated that the acidity of the solvent plays a critical role in the control of diastereoselectivity by trapping the adduct of nickel hydride to C[double bond, length as m-dash]C bonds via protonolysis, giving the hydrogenation product with stereospecific syn-selectivity. This protocol provides efficient access to chiral α-fluoro-β-amino esters which have important potential applications in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Yu-Qing Guan
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Zhengyu Han
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Xiuxiu Li
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Cai You
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Xuefeng Tan
- Department of Chemistry , Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
- Engineering Research Center of Organosilicon Compounds & Materials , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
- Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , P. R. China
| | - Xumu Zhang
- Department of Chemistry , Shenzhen Grubbs Institute , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China
| |
Collapse
|
4
|
Luan JJ, Zhang YS, Liu XY, Wang YQ, Zuo J, Song JG, Zhang W, Wang WS. Dosing-time contributes to chronotoxicity of clofarabine in mice via means other than pharmacokinetics. Kaohsiung J Med Sci 2016; 32:227-34. [PMID: 27316580 DOI: 10.1016/j.kjms.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 11/16/2022] Open
Abstract
To evaluate the time- and dose-dependent toxicity of clofarabine in mice and to further define the chronotherapy strategy of it in leukemia, we compared the mortality rates, LD50s, biochemical parameters, histological changes and organ indexes of mice treated with clofarabine at various doses and time points. Plasma clofarabine levels and pharmacokinetic parameters were monitored continuously for up to 8 hours after the single intravenous administration of 20 mg/kg at 12:00 noon and 12:00 midnight by high performance liquid chromatography (HPLC)-UV method. Clofarabine toxicity in all groups fluctuated in accordance with circadian rhythms in vivo. The toxicity of clofarabine in mice in the rest phase was more severe than the active one, indicated by more severe liver damage, immunodepression, higher mortality rate, and lower LD50. No significant pharmacokinetic parameter changes were observed between the night and daytime treatment groups. These findings suggest the dosing-time dependent toxicity of clofarabine synchronizes with the circadian rhythm of mice, which might provide new therapeutic strategies in further clinical application.
Collapse
Affiliation(s)
- Jia-Jie Luan
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China; Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yu-Shan Zhang
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China; Department of Pharmacy, Chinese People's Liberation Army 150th Central Hospital, Luoyang, China
| | - Xiao-Yun Liu
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China; Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ya-Qin Wang
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China
| | - Jian Zuo
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China; Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jian-Guo Song
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China.
| | - Wen Zhang
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China; Department of Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Wu-San Wang
- Institute of Clinical Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Dontabhaktuni A, Taft DR, Patel M. Gentamicin Renal Excretion in Rats: Probing Strategies to Mitigate Drug-Induced Nephrotoxicity. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/pp.2016.71007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Eadon MT, Wheeler HE, Stark AL, Zhang X, Moen EL, Delaney SM, Im HK, Cunningham PN, Zhang W, Dolan ME. Genetic and epigenetic variants contributing to clofarabine cytotoxicity. Hum Mol Genet 2013; 22:4007-20. [PMID: 23720496 DOI: 10.1093/hmg/ddt240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
2-chloro-2-fluoro-deoxy-9-D-arabinofuranosyladenine (Clofarabine), a purine nucleoside analog, is used in the treatment of hematologic malignancies and as induction therapy for stem cell transplantation. The discovery of pharmacogenomic markers associated with chemotherapeutic efficacy and toxicity would greatly benefit the utility of this drug. Our objective was to identify genetic and epigenetic variants associated with clofarabine toxicity using an unbiased, whole genome approach. To this end, we employed International HapMap lymphoblastoid cell lines (190 LCLs) of European (CEU) or African (YRI) ancestry with known genetic information to evaluate cellular sensitivity to clofarabine. We measured modified cytosine levels to ascertain the contribution of genetic and epigenetic factors influencing clofarabine-mediated cytotoxicity. Association studies revealed 182 single nucleotide polymorphisms (SNPs) and 143 modified cytosines associated with cytotoxicity in both populations at the threshold P ≤ 0.0001. Correlation between cytotoxicity and baseline gene expression revealed 234 genes at P ≤ 3.98 × 10(-6). Six genes were implicated as: (i) their expression was directly correlated to cytotoxicity, (ii) they had a targeting SNP associated with cytotoxicity, and (iii) they had local modified cytosines associated with gene expression and cytotoxicity. We identified a set of three SNPs and three CpG sites targeting these six genes explaining 43.1% of the observed variation in phenotype. siRNA knockdown of the top three genes (SETBP1, BAG3, KLHL6) in LCLs revealed altered susceptibility to clofarabine, confirming relevance. As clofarabine's toxicity profile includes acute kidney injury, we examined the effect of siRNA knockdown in HEK293 cells. siSETBP1 led to a significant change in HEK293 cell susceptibility to clofarabine.
Collapse
|
7
|
Priestap HA, Torres MC, Rieger RA, Dickman KG, Freshwater T, Taft DR, Barbieri MA, Iden CR. Aristolochic acid I metabolism in the isolated perfused rat kidney. Chem Res Toxicol 2011; 25:130-9. [PMID: 22118289 DOI: 10.1021/tx200333g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aristolochic acids are natural nitro-compounds found globally in the plant genus Aristolochia that have been implicated in the severe illness in humans termed aristolochic acid nephropathy (AAN). Aristolochic acids undergo nitroreduction, among other metabolic reactions, and active intermediates arise that are carcinogenic. Previous experiments with rats showed that aristolochic acid I (AA-I), after oral administration or injection, is subjected to detoxication reactions to give aristolochic acid Ia, aristolactam Ia, aristolactam I, and their glucuronide and sulfate conjugates that can be found in urine and feces. Results obtained with whole rats do not clearly define the role of liver and kidney in such metabolic transformation. In this study, in order to determine the specific role of the kidney on the renal disposition of AA-I and to study the biotransformations suffered by AA-I in this organ, isolated kidneys of rats were perfused with AA-I. AA-I and metabolite concentrations were determined in perfusates and urine using HPLC procedures. The isolated perfused rat kidney model showed that AA-I distributes rapidly and extensively in kidney tissues by uptake from the peritubular capillaries and the tubules. It was also established that the kidney is able to metabolize AA-I into aristolochic acid Ia, aristolochic acid Ia O-sulfate, aristolactam Ia, aristolactam I, and aristolactam Ia O-glucuronide. Rapid demethylation and sulfation of AA-I in the kidney generate aristolochic acid Ia and its sulfate conjugate that are voided to the urine. Reduction reactions to give the aristolactam metabolites occur to a slower rate. Renal clearances showed that filtered AA-I is reabsorbed at the tubules, whereas the metabolites are secreted. The unconjugated metabolites produced in the renal tissues are transported to both urine and perfusate, whereas the conjugated metabolites are almost exclusively secreted to the urine.
Collapse
Affiliation(s)
- Horacio A Priestap
- Department of Biological Sciences, Florida International University , Miami, Florida 33199, United States.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Babayeva M, Cox S, White MP, Taft DR. Renal excretion of apricitabine in rats: ex vivo and in vivo studies. Eur J Drug Metab Pharmacokinet 2011; 36:141-50. [PMID: 21744041 DOI: 10.1007/s13318-011-0038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
Apricitabine (ATC) is a novel nucleoside reverse transcriptase inhibitor undergoing phase 2/3 clinical development for the treatment of HIV infection. In this investigation, the renal handling of ATC was evaluated in the isolated perfused rat kidney (IPK) model with follow-up in vivo studies. IPK experiments were performed to characterize the renal excretion of ATC, to probe mechanisms of ATC excretion using known inhibitors of organic cation (cimetidine) and organic anion (probenecid) transport systems, and to screen for potential drug-drug interactions between ATC and clinically relevant medications (dapsone, metformin, pentamidine, stavudine, tenofovir and ritonavir). ATC demonstrated net tubular secretion in the IPK with a baseline excretion ratio (XR) of 2.1 ± 0.56. ATC XR decreased 3.6-fold in the presence of cimetidine and 2-fold in the presence of probenecid. Among the clinically relevant medications, metformin produced the greatest inhibitory effect on ATC excretion. In vivo studies were conducted in rats to evaluate ATC disposition upon co-administration with compounds that showed a significant effect on ATC clearance in the IPK model. Co-administration of cimetidine and trimethoprim significantly reduced ATC renal clearance, but resulted in only a moderate increase in plasma exposure. Metformin had no apparent effect on ATC clearance in rats. These findings indicate that the IPK model is more sensitive to secretory inhibition as compared to in vivo. The medications screened showed minimal effects on ATC renal excretion in the IPK, and should thus be excluded as potential in vivo interactants. Overall, this study generated important information on renal handling of ATC to support its development and commercialization.
Collapse
Affiliation(s)
- Mariana Babayeva
- College of Pharmacy, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201, USA
| | | | | | | |
Collapse
|