1
|
González-Fernández FM, Delledonne A, Nicoli S, Gasco P, Padula C, Santi P, Sissa C, Pescina S. Nanostructured Lipid Carriers for Enhanced Transscleral Delivery of Dexamethasone Acetate: Development, Ex Vivo Characterization and Multiphoton Microscopy Studies. Pharmaceutics 2023; 15:pharmaceutics15020407. [PMID: 36839729 PMCID: PMC9961953 DOI: 10.3390/pharmaceutics15020407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Corticosteroids, although highly effective for the treatment of both anterior and posterior ocular segment inflammation, still nowadays struggle for effective drug delivery due to their poor solubilization capabilities in water. This research work aims to develop nanostructured lipid carriers (NLC) intended for periocular administration of dexamethasone acetate to the posterior segment of the eye. Pre-formulation studies were initially performed to find solid and liquid lipid mixtures for dexamethasone acetate solubilization. Pseudoternary diagrams at 65 °C were constructed to select the best surfactant based on the macroscopic transparency and microscopic isotropy of the systems. The resulting NLC, obtained following an organic solvent-free methodology, was composed of triacetin, Imwitor® 491 (glycerol monostearate >90%) and tyloxapol with Z-average = 106.9 ± 1.2 nm, PDI = 0.104 ± 0.019 and zeta potential = -6.51 ± 0.575 mV. Ex vivo porcine sclera and choroid permeation studies revealed a considerable metabolism in the sclera of dexamethasone acetate into free dexamethasone, which demonstrated higher permeation capabilities across both tissues. In addition, the NLC behavior once applied onto the sclera was further studied by means of multiphoton microscopy by loading the NLC with the fluorescent probe Nile red.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| |
Collapse
|
2
|
González Iglesias LG, Messaoudi S, Kalia YN. Non-Invasive Iontophoretic Delivery of Cytochrome c to the Posterior Segment and Determination of Its Ocular Biodistribution. Pharmaceutics 2022; 14:pharmaceutics14091832. [PMID: 36145581 PMCID: PMC9504550 DOI: 10.3390/pharmaceutics14091832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
The intact porcine eye globe model was used to demonstrate that transscleral iontophoresis could deliver a small protein, cytochrome c (Cyt c), to the posterior segment and to investigate post-iontophoretic biodistribution in the different ocular compartments. The effects of Cyt c concentration (1, 5, and 10 mg/mL), current density (3.5 and 5.5 mA/cm2), and duration of the current application (10 min and 1, 2, and 4 h) were evaluated. The data confirmed that transscleral iontophoresis enhanced the intraocular delivery of Cyt c under all conditions as compared to passive controls (same setup but without the current application). Increasing the Cyt c concentration resulted in a proportional enhancement in the Cyt c delivery. Increasing the current density from 3.5 to 5.5 mA/cm2 increased iontophoretic delivery at a Cyt c concentration of 10 mg/mL but did not appear to do so at 5 mg/mL; this was attributed in part to the effect of melanin binding. Short duration iontophoresis (10 min, 3.5 mA/cm2) of a 10 mg/mL Cyt c solution created a depot in the sclera. When this was followed by a 4 h incubation period, post-iontophoretic Cyt c diffusion from the sclera resulted in a different biodistribution, and Cyt c could be quantified in the posterior segment.
Collapse
Affiliation(s)
- Laura Gisela González Iglesias
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Siwar Messaoudi
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Zhao F, Fan S, Ghate D, Romanova S, Bronich TK, Zhao S. A Hydrogel Ionic Circuit Based High-Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107315. [PMID: 34716729 PMCID: PMC8813891 DOI: 10.1002/adma.202107315] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Iontophoresis is an electrical-current-based, noninvasive drug-delivery technology, which is particularly suitable for intraocular drug delivery. Current ocular iontophoresis devices use low current intensities that significantly limit macromolecule and nanoparticle (NP) delivery efficiency. Increasing current intensity leads to ocular tissue damage. Here, an iontophoresis device based on a hydrogel ionic circuit (HIC), for high-efficiency intraocular macromolecule and NP delivery, is described. The HIC-based device is capable of minimizing Joule heating, effectively buffering electrochemical (EC) reaction-generated pH changes, and absorbing electrode overpotential-induced heating. As a result, the device allows safe application of high current intensities (up to 87 mA cm-2 , more than 10 times higher than current ocular iontophoresis devices) to the eye with minimal ocular cell death and tissue damage. The high-intensity iontophoresis significantly enhances macromolecule and NP delivery to both the anterior and posterior segments by up to 300 times compared to the conventional iontophoresis. Therapeutically effective concentrations of bevacizumab and dexamethasone are delivered to target tissue compartments within 10-20 min of iontophoresis application. This study highlights the significant safety enhancement enabled by an HIC-based device design and the potential of the device to deliver therapeutic doses of macromolecule and NP ophthalmic drugs within a clinically relevant time frame.
Collapse
Affiliation(s)
- Fan Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shan Fan
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepta Ghate
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Svetlana Romanova
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Siwei Zhao
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
4
|
Ilgin P, Ozay H, Ozay O. A new dual stimuli responsive hydrogel: Modeling approaches for the prediction of drug loading and release profile. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Santer V, Chen Y, Kalia YN. Controlled non-invasive iontophoretic delivery of triamcinolone acetonide amino acid ester prodrugs into the posterior segment of the eye. Eur J Pharm Biopharm 2018; 132:157-167. [PMID: 30266666 DOI: 10.1016/j.ejpb.2018.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
This study investigated short duration transscleral iontophoretic delivery of four triamcinolone acetonide (TA) amino acid ester prodrugs (TA-AA) (alanine, Ala; arginine, Arg; isoleucine, Ile and lysine, Lys) using whole porcine eyes globes in vitro. Post-iontophoretic biodistribution of TA was quantified by UHPLC-MS/MS in the different ocular compartments (cornea, aqueous humor, sclera, ciliary body, choroid and retinal pigmented epithelium (RPE), neural retina and vitreous humor). Transscleral iontophoresis (3 mA/cm2 for 10 min) increased total drug delivery of the TA-AA prodrugs by 14-30-fold as compared to passive diffusion. The TA-AA prodrugs had distinct biodistribution profiles - the penetration depth achieved was dependent on their physicochemical properties (e.g. lipophilicity for TA-Ile) and susceptibility to hydrolysis (e.g. TA-Arg). Intraocular drug distribution was also influenced by prodrug binding to melanin (TA-Lys). Interestingly, under conditions of equivalent charge (6 mA/cm2 for 5 min vs. 1.5 mA/cm2 for 20 min, i.e. 1.44 C respectively) the longer duration (20 min) at lower current density resulted in ∼6 times more TA delivery into the vitreous humor. Overall, the study provided further evidence of the potential of transscleral iontophoresis for the non-invasive treatment of posterior segment inflammatory diseases.
Collapse
Affiliation(s)
- Verena Santer
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Yong Chen
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU-1, rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
6
|
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 2018; 126:96-112. [PMID: 28916492 DOI: 10.1016/j.addr.2017.09.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Overcoming the physiological barriers in the eye remains a key obstacle in the field of ocular drug delivery. While ocular barriers naturally have a protective function, they also limit drug entry into the eye. Various pharmaceutical strategies, such as novel formulations and physical force-based techniques, have been investigated to weaken these barriers and transport therapeutic agents effectively to both the anterior and the posterior segments of the eye. This review summarizes and discusses the recent research progress in the field of ocular drug delivery with a focus on the application of physical methods, including electrical fields, sonophoresis, and microneedles, which can enhance penetration efficiency by transiently disrupting the ocular barriers in a minimally or non-invasive manner.
Collapse
|
7
|
Chen Y, Kalia YN. Short-duration ocular iontophoresis of ionizable aciclovir prodrugs: A new approach to treat herpes simplex infections in the anterior and posterior segments of the eye. Int J Pharm 2018; 536:292-300. [DOI: 10.1016/j.ijpharm.2017.11.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023]
|
8
|
Abstract
INTRODUCTION The sclera is considered the 'static barrier,' a main barrier for transscleral drug delivery. The characterization of passive and iontophoretic transport across the sclera in vitro is the first step toward our ability to predict transscleral drug delivery. Although previous studies have investigated this topic, the quantitative structure permeation relationships (QSPR) for passive and iontophoretic transscleral transport are not available. AREAS COVERED This review evaluated previous results of transscleral passive and iontophoretic transport in vitro and examined QSPR for transscleral permeation of small permeants and macromolecules. Passive permeation data in the literature were compared with respective to the animal species employed in the studies. Data variability was investigated. Electrotransport theory and the mechanisms of iontophoresis were reviewed and used to analyze the iontophoresis data. EXPERT OPINION QSPR was examined for passive transscleral permeation, showing correlations between logarithm of permeability coefficient and logarithm of molecular weight. Potential causes of data variability were proposed. QSPR were established for electroosmosis using the molecular weight of neutral permeants and for iontophoresis enhancement using the molecular weight and charge of ionic permeants. However, QSPR for charged macromolecules were empirical; iontophoretic flux enhancement was significantly smaller than Nernst-Planck model prediction due to complicating factors.
Collapse
Affiliation(s)
- S Kevin Li
- a Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , USA
| | - Jinsong Hao
- b Department of Pharmaceutical Science and Research, School of Pharmacy , Marshall University , Huntington , WV , USA
| |
Collapse
|
9
|
Santer V, Del Río Sancho S, Lapteva M, Kalia YN. Targeted intracorneal delivery-Biodistribution of triamcinolone acetonide following topical iontophoresis of cationic amino acid ester prodrugs. Int J Pharm 2017; 525:43-53. [PMID: 28414134 DOI: 10.1016/j.ijpharm.2017.04.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
The aim was to investigate intracorneal iontophoresis of biolabile triamcinolone acetonide (TA) amino acid ester prodrugs (TA-AA). Arginine and lysine esters of TA (TA-Arg and TA-Lys, respectively) were synthesized and characterized; quantification was performed by HPLC-UV and UHPLC-MS/MS. The aqueous solubility of the prodrugs (at pH 5.5) was ∼1000-fold greater than TA. Anodal iontophoresis (10min at 3mA/cm2) of TA-AA was investigated using isolated porcine cornea. Although no statistically significant difference was observed in total intracorneal delivery of TA (468.25±59.70 and 540.85±79.16nmolTA/cm2, for TA-Arg and TA-Lys, respectively), the different susceptibilities of the prodrugs to hydrolysis influenced intracorneal biodistribution. Quantification of TA in twenty-five 40μm thick corneal lamellae revealed significantly deeper penetration of TA following TA-Lys iontophoresis. Its superior resistance to hydrolysis enabled sustained electromigration into the deeper cornea suggesting judicious prodrug selection might enable targeted regioselective drug delivery. The intracorneal biodistribution following anodal iontophoresis of TA-Arg (2.3mM; 10min, 3mA/cm2) was visualized by full field optical coherence tomography providing qualitative confirmation of the extensive intracorneal penetration of TA. Short duration iontophoresis of TA-AA prodrugs may improve deep corneal bioavailability and efficacy in vivo, constituting a "single-shot" treatment option for corneal allograft rejection.
Collapse
Affiliation(s)
- Verena Santer
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Sergio Del Río Sancho
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
10
|
Parameters affecting the transscleral delivery of two positively charged proteins of comparable size. Int J Pharm 2017; 521:214-221. [DOI: 10.1016/j.ijpharm.2017.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
|
11
|
Pescina S, Govoni P, Antopolsky M, Murtomäki L, Padula C, Santi P, Nicoli S. Permeation of proteins, oligonucleotide and dextrans across ocular tissues: experimental studies and a literature update. J Pharm Sci 2015; 104:2190-202. [PMID: 25973792 DOI: 10.1002/jps.24465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022]
Abstract
Proteins and oligonucleotides represent powerful tools for the treatment of several ocular diseases, affecting both anterior and posterior eye segments. Despite the potential of these compounds, their administration remains a challenge. The last years have seen a growing interest for the noninvasive administration of macromolecular drugs, but still there is only little information of their permeability across the different ocular barriers. The aim of this work was to evaluate the permeation of macromolecules of different size, shape and charge across porcine ocular tissues such as the isolated sclera, the choroid Bruch's membrane and the cornea, both intact and de-epitelialized. Permeants used were two proteins (albumin and cytochrome C), an oligonucleotide, two dextrans (4 and 40 kDa) and a monoclonal antibody (bevacizumab). Obtained data and its comparison with the literature highlight the difficulties in predicting the behavior of macromolecules based on their physicochemical properties, because the interplay between the charge, molecular radius and conformation prevent their analysis separately. However, the data can be of great help for a rough evaluation of the feasibility of a noninvasive administration and for building computational models to improve understanding of the interplay among static, dynamic and metabolic barriers in the delivery of macromolecules to the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Paolo Govoni
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, 43126, Italy
| | - Maxim Antopolsky
- Centre for Drug Research, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lasse Murtomäki
- Department of Chemistry, Aalto University, Aalto, FI-00076, Finland
| | - Cristina Padula
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Patrizia Santi
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Sara Nicoli
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| |
Collapse
|
12
|
Virtual pharmacokinetic model of human eye. Math Biosci 2014; 253:11-8. [PMID: 24721554 DOI: 10.1016/j.mbs.2014.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/04/2013] [Accepted: 03/24/2014] [Indexed: 11/24/2022]
Abstract
A virtual pharmacokinetic 3D model of the human eye is built using Comsol Multiphysics® software, which is based on the Finite Element Method (FEM). The model considers drug release from a polymer patch placed on sclera. The model concentrates on the posterior part of the eye, retina being the target tissue, and comprises the choroidal blood flow, partitioning of the drug between different tissues and active transport at the retina pigment epithelium (RPE)-choroid boundary. Although most straightforward, in order to check the mass balance, no protein binding or metabolism is yet included. It appeared that the most important issue in obtaining reliable simulation results is the finite element mesh, while time stepping has hardly any significance. Simulations were extended to 100,000 s. The concentration of a drug is shown as a function of time at various points of retina, as well as its average value, varying several parameters in the model. This work demonstrates how anybody with basic knowledge of calculus is able to build physically meaningful models of quite complex biological systems.
Collapse
|
13
|
Murtomäki L, Vainikka T, Pescina S, Nicoli S. Drug Adsorption on Bovine and Porcine Sclera Studied with Streaming Potential. J Pharm Sci 2013; 102:2264-72. [DOI: 10.1002/jps.23585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/02/2013] [Accepted: 04/12/2013] [Indexed: 01/20/2023]
|
14
|
In vitro trans-scleral iontophoresis of methylprednisolone hemisuccinate with short application time and high drug concentration. Int J Pharm 2013; 451:12-7. [DOI: 10.1016/j.ijpharm.2013.04.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 01/09/2023]
|
15
|
Pescina S, Antopolsky M, Santi P, Nicoli S, Murtomäki L. Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides. Eur J Pharm Sci 2013; 49:142-7. [PMID: 23485440 DOI: 10.1016/j.ejps.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/21/2012] [Accepted: 02/03/2013] [Indexed: 01/17/2023]
Abstract
Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | |
Collapse
|
16
|
Abstract
Non-invasive drug delivery to the posterior segment of the eye represents an important unmet medical need, and trans-scleral delivery could be an interesting solution. This review analyses the possibility of trans-scleral drug delivery for high molecular weight compounds, such as proteins and genetic material, which currently represent the most innovative and efficacious molecules for the treatment of many diseases of the posterior segment of the eye. The paper reviews all the barriers, both static and dynamic, involved in trans-scleral administration of drugs, trying to elucidate the role of each of them in the specific case of macromolecules. Delivery systems to sustain drug release and enhancing strategies to improve trans-scleral penetration are also described. Finally, the review approaches the use of computational models as a screening tool to evaluate the feasibility of trans-scleral administration for macromolecules.
Collapse
|