1
|
Shen H, Huo R, Zhang Y, Wang L, Tong N, Chen W, Paris AJ, Mensah K, Chen M, Xue Y, Li W, Sinz M. A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants. J Pharmacol Exp Ther 2024; 390:162-173. [PMID: 38296646 DOI: 10.1124/jpet.123.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC 50 0.40 μM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and C max of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and C max values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Nian Tong
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Weiqi Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Andrew J Paris
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Kofi Mensah
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Min Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Wenying Li
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| |
Collapse
|
2
|
Hsin CH, Kuehne A, Gu Y, Jedlitschky G, Hagos Y, Gründemann D, Fuhr U. In vitro validation of an in vivo phenotyping drug cocktail for major drug transporters in humans. Eur J Pharm Sci 2023; 186:106459. [PMID: 37142000 DOI: 10.1016/j.ejps.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1 (hOATP1B1). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | | | - Yi Gu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Gründemann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.
| |
Collapse
|
3
|
Elsby R, Atkinson H, Butler P, Riley RJ. Studying the right transporter at the right time: an in vitro strategy for assessing drug-drug interaction risk during drug discovery and development. Expert Opin Drug Metab Toxicol 2022; 18:619-655. [PMID: 36205497 DOI: 10.1080/17425255.2022.2132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transporters are significant in dictating drug pharmacokinetics, thus inhibition of transporter function can alter drug concentrations resulting in drug-drug interactions (DDIs). Because they can impact drug toxicity, transporter DDIs are a regulatory concern for which prediction of clinical effect from in vitro data is critical to understanding risk. AREA COVERED The authors propose in vitro strategies to assist mitigating/removing transporter DDI risk during development by frontloading specific studies, or managing patient risk in the clinic. An overview of clinically relevant drug transporters and observed DDIs are provided, alongside presentation of key considerations/recommendations for in vitro study design evaluating drugs as inhibitors or substrates. Guidance on identifying critical co-medications, clinically relevant disposition pathways and using mechanistic static equations for quantitative prediction of DDI is compiled. EXPERT OPINION The strategies provided will facilitate project teams to study the right transporter at the right time to minimise development risks associated with DDIs. To truly alleviate or manage clinical risk, the industry will benefit from moving away from current qualitative basic static equation approaches to transporter DDI hazard assessment towards adopting the use of mechanistic models to enable quantitative DDI prediction, thereby contextualising risk to ascertain whether a transporter DDI is simply pharmacokinetic or clinically significant requiring intervention.
Collapse
Affiliation(s)
- Robert Elsby
- Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Hayley Atkinson
- Drug Transporter Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Philip Butler
- ADME Sciences, Cyprotex Discovery Ltd (an Evotec company), Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Robert J Riley
- Drug Metabolism and Pharmacokinetics, Evotec, Abingdon, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Gao J, Wang C, Wei W. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis. Life Sci 2021; 268:118907. [PMID: 33428880 DOI: 10.1016/j.lfs.2020.118907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporter families consist of common drug transporters that mediate the efflux and uptake of drugs, respectively, and play an important role in the absorption, distribution, metabolism and excretion of drugs in vivo. Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and there are many RA patients worldwide. Methotrexate (MTX), the first-choice treatment for RA, can reduce the level of inflammation, prevent joint erosion and functional damage, and greatly reduce pain in RA patients. However, many patients show resistance to MTX, greatly affecting the efficacy of MTX. Many factors, such as irrational drug use and heredity, are associated with drug resistance. Considering the effect of drug transporters on drugs, many studies have compared the expression of drug transporters in drug-resistant and drug-sensitive patients, and abnormal transporter expression and transport activity have been found in patients with MTX resistance. Thus, drug transporters are involved in drug resistance. This article reviews the effects of transporters on the efficacy of MTX in the treatment of RA.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
5
|
Antonescu IE, Karlgren M, Pedersen ML, Simoff I, Bergström CAS, Neuhoff S, Artursson P, Steffansen B, Nielsen CU. Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties: Implications for Renal Acamprosate Secretion and Drug-Drug Interactions. Pharmaceutics 2020; 12:pharmaceutics12040390. [PMID: 32344570 PMCID: PMC7238232 DOI: 10.3390/pharmaceutics12040390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/11/2023] Open
Abstract
Acamprosate is an anionic drug substance widely used in treating symptoms of alcohol withdrawal. It was recently shown that oral acamprosate absorption is likely due to paracellular transport. In contrast, little is known about the eliminating mechanism clearing acamprosate from the blood in the kidneys, despite the fact that studies have shown renal secretion of acamprosate. The hypothesis of the present study was therefore that renal organic anion transporters (OATs) facilitate the renal excretion of acamprosate in humans. The aim of the present study was to establish and apply OAT1 (gene product of SLC22A6) and OAT3 (gene product of SLC22A8) expressing cell lines to investigate whether acamprosate is a substrate or inhibitor of OAT1 and/or OAT3. The studies were performed in HEK293-Flp-In cells stably transfected with SLC22A6 or SLC22A8. Protein and functional data showed that the established cell lines are useful for studying OAT1- and OAT3-mediated transport in bi-laboratory studies. Acamprosate inhibited OAT1-mediated p-aminohippuric acid (PAH) uptake but did not inhibit substrate uptake via OAT3 expressing cells, neither when applied concomitantly nor after a 3 h preincubation with acamprosate. The uptake of PAH via OAT1 was inhibited in a competitive manner by acamprosate and cellular uptake studies showed that acamprosate is a substrate for OAT1 with a Km-value of approximately 700 µM. Probenecid inhibited OAT1-mediated acamprosate uptake with a Ki-value of approximately 13 µM, which may translate into an estimated clinically significant DDI index. In conclusion, acamprosate was identified as a substrate of OAT1 but not OAT3.
Collapse
Affiliation(s)
- Irina E. Antonescu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
| | - Maria L. Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
| | - Ivailo Simoff
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden;
| | - Christel A. S. Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK;
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden; (M.K.); (C.A.S.B.); (P.A.)
- Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Husargatan 3 BMC, SE-751 23 Uppsala, Sweden;
| | | | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (I.E.A.); (M.L.P.)
- Correspondence: ; Tel.: +45-6550-9427
| |
Collapse
|
6
|
Jiang D, Lei T, Wang Z, Shen C, Cao D, Hou T. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. J Cheminform 2020; 12:16. [PMID: 33430990 PMCID: PMC7059329 DOI: 10.1186/s13321-020-00421-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transporter, plays a critical role in multi-drug resistance (MDR) to anti-cancer drugs and drug–drug interactions. The prediction of BCRP inhibition can facilitate evaluating potential drug resistance and drug–drug interactions in early stage of drug discovery. Here we reported a structurally diverse dataset consisting of 1098 BCRP inhibitors and 1701 non-inhibitors. Analysis of various physicochemical properties illustrates that BCRP inhibitors are more hydrophobic and aromatic than non-inhibitors. We then developed a series of quantitative structure–activity relationship (QSAR) models to discriminate between BCRP inhibitors and non-inhibitors. The optimal feature subset was determined by a wrapper feature selection method named rfSA (simulated annealing algorithm coupled with random forest), and the classification models were established by using seven machine learning approaches based on the optimal feature subset, including a deep learning method, two ensemble learning methods, and four classical machine learning methods. The statistical results demonstrated that three methods, including support vector machine (SVM), deep neural networks (DNN) and extreme gradient boosting (XGBoost), outperformed the others, and the SVM classifier yielded the best predictions (MCC = 0.812 and AUC = 0.958 for the test set). Then, a perturbation-based model-agnostic method was used to interpret our models and analyze the representative features for different models. The application domain analysis demonstrated the prediction reliability of our models. Moreover, the important structural fragments related to BCRP inhibition were identified by the information gain (IG) method along with the frequency analysis. In conclusion, we believe that the classification models developed in this study can be regarded as simple and accurate tools to distinguish BCRP inhibitors from non-inhibitors in drug design and discovery pipelines.![]()
Collapse
Affiliation(s)
- Dejun Jiang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tailong Lei
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Chao Shen
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004, Hunan, People's Republic of China.
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Pflugbeil S, Böckl K, Pongratz R, Leitner M, Graninger W, Ortner A. Drug interactions in the treatment of rheumatoid arthritis and psoriatic arthritis. Rheumatol Int 2020; 40:511-521. [PMID: 32052146 DOI: 10.1007/s00296-020-04526-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/25/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Treating patients with inflammatory joint diseases (rheumatoid arthritis, psoriatic arthritis) according to established treatment algorithms often requires the simultaneous use of three or more medications to relieve symptoms and prevent long-term joint damage as well as disability. OBJECTIVE To assess and give an overview on drug-drug interactions in the pharmacotherapy of inflammatory joint diseases with regards to their clinical relevance. METHODS All possible drug combinations were evaluated using three commercially available drug interaction programs. In those cases where only limited/no data were found, a comprehensive hand search of Pubmed was carried out. Finally, the drug-drug interactions of all possible combinations were classified according to evidence-based medicine and a specifically generated relevance-based system. RESULTS All three interaction software programs showed consistent results. All detected interactions were combined in clearly structured tables. CONCLUSION A concise overview on drug-drug interactions is given. Especially in more sophisticated cases extensive knowledge of drug interactions supports optimisation of therapy and results in improved patient safety.
Collapse
Affiliation(s)
- Stephan Pflugbeil
- Division of Rheumatology, ÖGK Outpatient Department of Graz, 8010, Graz, Austria
| | - Karin Böckl
- Institute of Pharmaceutical Sciences, University of Graz, 8010, Graz, Austria
| | - Reinhold Pongratz
- Division of Rheumatology, ÖGK Outpatient Department of Graz, 8010, Graz, Austria
| | - Marianne Leitner
- Hospital Pharmacy, Medical University of Graz, 8036, Graz, Austria
| | - Winfried Graninger
- Department of Rheumatology, Medical University of Graz, 8036, Graz, Austria
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
8
|
Bu T, Wang C, Meng Q, Huo X, Sun H, Sun P, Zheng S, Ma X, Liu Z, Liu K. Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur J Pharmacol 2018; 834:266-273. [PMID: 30031796 DOI: 10.1016/j.ejphar.2018.07.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate the protective effect of rhein, a major metabolite of diacerein, on methotrexate (MTX)-induced hepatotoxicity and clarify the pharmacological mechanism. Rhein significantly reduced the elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) caused by MTX in rat serum and improved liver morphological damage induced by MTX. Moreover, rhein increased the cell survival rate and reduced the number of apoptosis cells in MTX-treated normal human hepatocyte (L02 cells). Rhein treatment in rats up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC), and down-regulated Bcl-2 associated x (Bax) in mRNA and protein levels. Furthermore, rhein treatment further decreased protein expression of nuclear factor-kappa B (NF-κB), tumor necrosis factor alpha (TNF-α) and cysteine aspartic acid specific protease 3 (Caspase-3), increased protein expression of B-cell lymphoma-extra large (Bcl-xl), and reduced mRNA expression of Bcl-2 homologous antagonist/killer (Bak) in MTX-treated rat liver in vivo. However, the protein expression changes of Nrf2, HO-1, GCLC, Bcl-2, Bcl-xl and Bax could be abrogated by Nrf2 antagonist brusatol. In addition, protective effect of rhein against MTX-mediated liver damage could also be suppressed by Nrf2 siRNA in L02 cells. Taken together, these findings suggested that rhein ameliorated liver damage mediated by MTX through acting on Nrf2-HO-1 pathway. NF-κB, TNF-α, Caspase-3 and Bcl-2 family were also participated in the protection. As effectively hepatoprotective ability of rhein, it would raise an important issue for patients orally receiving MTX treatment together with diacerein/rhein.
Collapse
Affiliation(s)
- Tianci Bu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Siqi Zheng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
10
|
Rodrigues AD, Taskar KS, Kusuhara H, Sugiyama Y. Endogenous Probes for Drug Transporters: Balancing Vision With Reality. Clin Pharmacol Ther 2017; 103:434-448. [DOI: 10.1002/cpt.749] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Affiliation(s)
- AD Rodrigues
- Pharmacokinetics; Dynamics & Metabolism, Medicine Design, Pfizer Inc.; Groton Connecticut USA
| | - KS Taskar
- Mechanistic Safety and Disposition; IVIVT, GlaxoSmithKline; Ware Hertfordshire UK
| | - H Kusuhara
- Laboratory of Molecular Pharmacokinetics; Graduate School of Pharmaceutical Sciences, University of Tokyo; Tokyo Japan
| | - Y Sugiyama
- RIKEN Innovation Center; Research Cluster for Innovation; RIKEN Kanagawa Japan
| |
Collapse
|
11
|
Ellens H, Johnson M, Lawrence SK, Watson C, Chen L, Richards-Peterson LE. Prediction of the Transporter-Mediated Drug-Drug Interaction Potential of Dabrafenib and Its Major Circulating Metabolites. Drug Metab Dispos 2017; 45:646-656. [PMID: 28320730 DOI: 10.1124/dmd.116.073932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/15/2016] [Indexed: 01/28/2023] Open
Abstract
The BRAF inhibitor dabrafenib was recently approved for the treatment of certain BRAF V600 mutation-positive tumors, either alone or in combination therapy with the mitogen-activated extracellular signal regulated kinase 1 (MEK1) and MEK2 inhibitor, trametinib. This article presents the dabrafenib transporter-mediated drug-drug interaction (DDI) risk assessment, which is currently an important part of drug development, regulatory submission, and drug registration. Dabrafenib and its major circulating metabolites (hydroxy-, carboxy-, and desmethyl-dabrafenib) were investigated as inhibitors of the clinically relevant transporters P-gp, BCRP, OATP1B1, OATP1B3, OCT2, OAT1, and OAT3. The DDI Guidance risk assessment decision criteria for inhibition of BCRP, OATP1B1 and OAT3 were slightly exceeded and therefore a minor DDI effect resulting from inhibition of these transporters remained possible. Biliary secretion is the major excretion pathway of dabrafenib-related material (71.1% of orally administered radiolabeled dose recovered in feces), whereas urinary excretion was observed as well (22.7% of the dose). In vitro uptake into human hepatocytes of the dabrafenib metabolites, but not of dabrafenib parent compound, was mediated, at least in part, by hepatic uptake transporters. The transporters responsible for uptake of the pharmacologically active hydroxy- and desmethyl dabrafenib could not be identified, whereas carboxy-dabrafenib was a substrate of several OATPs. Dabrafenib, hydroxy-, and desmethyl-dabrafenib were substrates of P-gp and BCRP, whereas carboxy-dabrafenib was not. Although a small increase in exposure to carboxy-dabrafenib upon inhibition of OATPs and an increase in exposure to desmethyl-dabrafenib upon inhibition of P-gp or BCRP cannot be excluded, the clinical significance of such increases is likely to be low.
Collapse
Affiliation(s)
- Harma Ellens
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Marta Johnson
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Sarah K Lawrence
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Cory Watson
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Liangfu Chen
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, King of Prussia, Pennsylvania
| | | |
Collapse
|
12
|
Liu Z, Jia Y, Wang C, Meng Q, Huo X, Sun H, Sun P, Yang X, Ma X, Peng J, Liu K. Organic anion transporters 1 (OAT1) and OAT3 meditated the protective effect of rhein on methotrexate-induced nephrotoxicity. RSC Adv 2017; 7:25461-25468. [DOI: 10.1039/c7ra02968c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Rhein protects methotrexate induced kidney damage mediated by OAT1 and OAT3.
Collapse
|
13
|
Factors Associated with Myelosuppression Related to Low-Dose Methotrexate Therapy for Inflammatory Rheumatic Diseases. PLoS One 2016; 11:e0154744. [PMID: 27128679 PMCID: PMC4851368 DOI: 10.1371/journal.pone.0154744] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Objective Severe myelosuppression is a serious concern in the management of rheumatic disease patients receiving methotrexate (MTX) therapy. This study was intended to explore factors associated with the development of MTX-related myelosuppression and its disease severity. Methods We retrospectively examined a total of 40 cases of MTX-related myelosuppression that had been filed in the registries of participating rheumatology and hematology divisions. Data before onset were compared with those of 120 controls matched for age and sex. Cytopenia was graded according to the National Cancer Institute criteria for adverse events. Data before and at onset were compared between the severe and non-severe groups. Results Non-use of folic acid supplements, concurrent medications, and low renal function were significantly associated with the development of myelosuppression (p < 0.001, p < 0.001, and p = 0.002, respectively). In addition, significantly lower MTX dosages, higher blood cell counts, and lower hemoglobin levels were seen in the myelosuppression group (p < 0.001). No patients exhibited leukocytopenia, neutropenia, or thrombocytopenia in routine blood monitoring taken within the past month. One-fourth developed myelosuppression within the first two months (an early-onset period). Myelosuppression was severe in approximately 40% of patients. Hypoalbuminemia and non-use of folic acid supplements were significantly associated with the severity of pancytopenia (p = 0.001 and 0.008, respectively). Besides these two factors, early onset and the use of lower doses of MTX were significantly associated with the severity of neutropenia (p = 0.003, 0.007, 0.003, and 0.002, respectively). Conclusions Myelosuppression can occur abruptly at any time during low-dose MTX therapy, but severe neutropenia is more likely to occur in the early-onset period of this therapy. Contrary to our expectations, disease severity was not dependent on MTX doses. Serum albumin levels and folic acid supplementation are the important factors affecting the severity of MTX-related pancytopenia and neutropenia.
Collapse
|
14
|
Elsby R, Martin P, Surry D, Sharma P, Fenner K. Solitary Inhibition of the Breast Cancer Resistance Protein Efflux Transporter Results in a Clinically Significant Drug-Drug Interaction with Rosuvastatin by Causing up to a 2-Fold Increase in Statin Exposure. Drug Metab Dispos 2016; 44:398-408. [PMID: 26700956 DOI: 10.1124/dmd.115.066795] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/18/2015] [Indexed: 01/01/2023] Open
Abstract
The intestinal efflux transporter breast cancer resistance protein (BCRP) restricts the absorption of rosuvastatin. Of the transporters important to rosuvastatin disposition, fostamatinib inhibited BCRP (IC50 = 50 nM) and organic anion-transporting polypeptide 1B1 (OATP1B1; IC50 > 10 μM), but not organic anion transporter 3, in vitro, predicting a drug-drug interaction (DDI) in vivo through inhibition of BCRP only. Consequently, a clinical interaction study between fostamatinib and rosuvastatin was performed (and reported elsewhere). This confirmed the critical role BCRP plays in statin absorption, as inhibition by fostamatinib resulted in a significant 1.96-fold and 1.88-fold increase in rosuvastatin area under the plasma concentration-time curve (AUC) and Cmax, respectively. An in vitro BCRP inhibition assay, using polarized Caco-2 cells and rosuvastatin as probe substrate, was subsequently validated with literature inhibitors and used to determine BCRP inhibitory potencies (IC50) of the perpetrator drugs eltrombopag, darunavir, lopinavir, clopidogrel, ezetimibe, fenofibrate, and fluconazole. OATP1B1 inhibition was also determined using human embryonic kidney 293-OATP1B1 cells versus estradiol 17β-glucuronide. Calculated parameters of maximum enterocyte concentration [Igut max], maximum unbound hepatic inlet concentration, transporter fraction excreted value, and determined IC50 value were incorporated into mechanistic static equations to compute theoretical increases in rosuvastatin AUC due to inhibition of BCRP and/or OATP1B1. Calculated theoretical increases in exposure correctly predicted the clinically observed changes in rosuvastatin exposure and suggested intestinal BCRP inhibition (not OATP1B1) to be the mechanism underlying the DDIs with these drugs. In conclusion, solitary inhibition of the intestinal BCRP transporter can result in clinically significant DDIs with rosuvastatin, causing up to a maximum 2-fold increase in exposure, which may warrant statin dose adjustment in clinical practice.
Collapse
Affiliation(s)
- Robert Elsby
- DMPK, Drug Safety and Metabolism (R.E., D.S.), and Quantitative Clinical Pharmacology, (P.M.), AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; and DMPK, Drug Safety and Metabolism, AstraZeneca R&D Darwin, Cambridge, Cambridgeshire, United Kingdom (P.S., K.F.)
| | - Paul Martin
- DMPK, Drug Safety and Metabolism (R.E., D.S.), and Quantitative Clinical Pharmacology, (P.M.), AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; and DMPK, Drug Safety and Metabolism, AstraZeneca R&D Darwin, Cambridge, Cambridgeshire, United Kingdom (P.S., K.F.)
| | - Dominic Surry
- DMPK, Drug Safety and Metabolism (R.E., D.S.), and Quantitative Clinical Pharmacology, (P.M.), AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; and DMPK, Drug Safety and Metabolism, AstraZeneca R&D Darwin, Cambridge, Cambridgeshire, United Kingdom (P.S., K.F.)
| | - Pradeep Sharma
- DMPK, Drug Safety and Metabolism (R.E., D.S.), and Quantitative Clinical Pharmacology, (P.M.), AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; and DMPK, Drug Safety and Metabolism, AstraZeneca R&D Darwin, Cambridge, Cambridgeshire, United Kingdom (P.S., K.F.)
| | - Katherine Fenner
- DMPK, Drug Safety and Metabolism (R.E., D.S.), and Quantitative Clinical Pharmacology, (P.M.), AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, United Kingdom; and DMPK, Drug Safety and Metabolism, AstraZeneca R&D Darwin, Cambridge, Cambridgeshire, United Kingdom (P.S., K.F.)
| |
Collapse
|
15
|
Abdul-Hamid M, Salah M. Intervention of ginger or propolis ameliorates methotrexate-induced ileum toxicity. Toxicol Ind Health 2016; 32:313-22. [PMID: 24097362 DOI: 10.1177/0748233713500833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The long-term clinical use of methotrexate (MTX) is restricted due to its severe intestinal toxicity. The protective effect of ginger or propolis on the toxicity induced by MTX is relatively less understood, so the possible protective effect of ginger or propolis, used separately, was investigated. A total of 60 male albino rats were divided into six groups as follows: (1) control group; (2) ginger group; (3) propolis group; (4) MTX group; (5) ginger + MTX group; and (6) propolis + MTX group. The present results show that MTX caused ileum injury, including shortening and fusion of the villi, inflammatory cell infiltration and goblet cell depletion. Administration of ginger or propolis ameliorated the MTX-induced ileum injury as shown by histological, immunohistochemical and ultrastructural investigations and statistical analysis. This is revealed by intact villi, which shows marked increase in brown colouration of proliferating cell nuclear antigen positive nuclei in the crypts region, improvement in the number of goblet cells and brush border length of ileum. The current results conclude the efficacy and safety of ginger and propolis, which may be due to their antioxidant properties.
Collapse
Affiliation(s)
- Manal Abdul-Hamid
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa Salah
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
16
|
Klukovits A, Krajcsi P. Mechanisms and therapeutic potential of inhibiting drug efflux transporters. Expert Opin Drug Metab Toxicol 2015; 11:907-20. [DOI: 10.1517/17425255.2015.1028917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Seeland S, Kettiger H, Murphy M, Treiber A, Giller J, Kiss A, Sube R, Krähenbühl S, Hafner M, Huwyler J. ATP-induced cellular stress and mitochondrial toxicity in cells expressing purinergic P2X7 receptor. Pharmacol Res Perspect 2015; 3:e00123. [PMID: 26038699 PMCID: PMC4448979 DOI: 10.1002/prp2.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022] Open
Abstract
Under pathological conditions, the purinergic P2X7 receptor is activated by elevated concentrations of extracellular ATP. Thereby, the receptor forms a slowly dilating pore, allowing cations and, upon prolonged stimulation, large molecules to enter the cell. This process has a strong impact on cell signaling, metabolism, and viability. This study aimed to establish a link between gradual P2X7 activation and pharmacological endpoints including oxidative stress, hydrogen peroxide generation, and cytotoxicity. Mechanisms of cellular stress and cytotoxicity were studied in P2X7-transfected HEK293 cells. We performed real-time monitoring of metabolic and respiratory activity of cells expressing the P2X7-receptor protein using a cytosensor system. Agonistic effects were monitored using exogenously applied ATP or the stable analogue BzATP. Oxidative stress induced by ATP or BzATP in target cells was monitored by hydrogen peroxide release in human mononuclear blood cells. P2X7-receptor activation was studied by patch-clamp experiments using a primary mouse microglia cell line. Stimulation of the P2X7 receptor leads to ion influx, metabolic activation of target cells, and ultimately cytotoxicity. Conversion of the P2X7 receptor from a small cation channel to a large pore occurring under prolonged stimulation can be monitored in real time covering a time frame of milliseconds to hours. Selectivity of the effects can be demonstrated using the selective P2X7-receptor antagonist AZD9056. Our findings established a direct link between P2X7-receptor activation by extracellular ATP or BzATP and cellular events culminating in cytotoxicity. Mechanisms of toxicity include metabolic and oxidative stress, increase in intracellular calcium concentration and disturbance of mitochondrial membrane potential. Mitochondrial toxicity is suggested to be a key event leading to cell death.
Collapse
Affiliation(s)
- Swen Seeland
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland ; Institute for Molecular and Cell Biology, University of Applied Science Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Hélène Kettiger
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Mark Murphy
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Alexander Treiber
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Jasmin Giller
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Andrea Kiss
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Romain Sube
- Actelion Pharmaceuticals Ltd Gewerbestrasse 16, 4123, Allschwil, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital of Basel 4056, Basel, Switzerland
| | - Mathias Hafner
- Institute for Molecular and Cell Biology, University of Applied Science Paul-Wittsack-Strasse 10, 68163, Mannheim, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
18
|
P2X-selective purinergic antagonists are strong inhibitors of HIV-1 fusion during both cell-to-cell and cell-free infection. J Virol 2014; 88:11504-15. [PMID: 25031337 DOI: 10.1128/jvi.01158-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) infection is chronic and presently still incurable. Antiretroviral drugs effectively suppress replication; however, persistent activation of inflammatory pathways remains a key cause of morbidity. Recent studies proposed that purinergic signaling is required for HIV-1 infection. Purinergic receptors are distributed throughout a wide variety of tissue types and detect extracellular ATP as a danger signal released from dying cells. We have explored how these pathways are involved in the transmission of HIV-1 from cell to cell through virological synapses. Infection of CD4+ T lymphocytes with HIV-1 in the presence of an inhibitor of P2X receptors effectively inhibited HIV-1 infection through both cell-free and cell-to-cell contact in a dose-dependent manner. Inhibition of direct cell-to-cell infection did not affect the formation of virological synapses or the subsequent cell-to-cell transfer of HIV-1. During both cell-free and cell-to-cell CD4+ T lymphocyte infection, purinergic antagonists blocked infection at the level of viral membrane fusion. During cell-to-cell transmission, we observed CXCR4 colocalization with the newly internalized virus particles within target lymphocytes and found that the purinergic antagonists did not impair the recruitment of the coreceptor CXCR4 to the site of Gag internalization in the target cell. In a screen of a library of purinergic antagonists, we found that the most potent inhibitors of HIV-1 fusion were those that target P2X receptors, while P2Y-selective receptor antagonists or adenosine receptor antagonists were ineffective. Our results suggest that P2X receptors may provide a therapeutic target and that purinergic antagonists may have potent activity against viral infection of CD4+ T lymphocytes by both cell-free and cell-to-cell transmission. IMPORTANCE This study identifies purinergic antagonists to be potent inhibitors of HIV-1 cell-free and cell-to-cell-mediated infection and provides a stepwise determination of when these compounds inhibit HIV-1 infection. These data provide a rationale for the development of novel antiretroviral therapies that have a dual role in both direct antiviral activity and the reduction of HIV-associated inflammation. Purinergic antagonists are shown here to have equivalent efficacy in inhibiting HIV infection via cell-free and cell-to-cell infection, and it is shown that purinergic receptors could provide an attractive therapeutic anti-HIV target that might avoid resistance by targeting a host signaling pathway that potently regulates HIV infection. The high-throughput screen of HIV-1 fusion inhibitors further defines P2X-selective compounds among the purinergic compounds as being the most potent HIV entry inhibitors. Clinical studies on these drugs for other inflammatory indications suggest that they are safe, and thus, if developed for use as anti-HIV agents, they could reduce both HIV replication and HIV-related inflammation.
Collapse
|
19
|
Interactions among Low Dose of Methotrexate and Drugs Used in the Treatment of Rheumatoid Arthritis. Adv Pharmacol Sci 2013; 2013:313858. [PMID: 23737767 PMCID: PMC3667469 DOI: 10.1155/2013/313858] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/26/2022] Open
Abstract
Methotrexate (MTX) is a nonbiological disease-modifying antirheumatic drug that has shown both a good control of clinical disease and a good safety. Usually drug-drug interactions (DDIs) represent the most limiting factor during the clinical management of any disease, in particular when several drugs are coadministered to treat the same disease. In this paper, we report the interactions among MTX and the other drugs commonly used in the management of rheumatoid arthritis. Using Medline, PubMed, Embase, Cochrane libraries, and Reference lists, we searched for the articles published until June 30, 2012, and we reported the most common DDIs between MTX and antirheumatic drugs. In particular, clinically relevant DDIs have been described during the treatment with MTX and NSAIDs, for example, diclofenac, indomethacin, or COX-2 inhibitors, and between MTX and prednisone or immunosuppressant drugs (e.g., leflunomide and cyclosporine). Finally, an increase in the risk of infections has been recorded during the combination treatment with MTX plus antitumor necrosis factor-α agents. In conclusion, during the treatment with MTX, DDIs play an important role in both the development of ADRs and therapeutic failure.
Collapse
|
20
|
Xu Q, Wang C, Meng Q, Liu Q, Sun H, Peng J, Ma X, Kaku T, Liu K. OAT1 and OAT3: targets of drug-drug interaction between entecavir and JBP485. Eur J Pharm Sci 2013; 48:650-657. [PMID: 23313623 DOI: 10.1016/j.ejps.2012.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/24/2012] [Accepted: 12/19/2012] [Indexed: 12/29/2022]
Abstract
Entecavir and JBP485 (a dipeptide) exhibit the antihepatitis activities and it is possible for the two drugs to be coadministered in the treatment of hepatitis. We aimed to elucidate whether entecavir was a substrate of OAT1, OAT3, OCT, and PEPT1 and to investigate the targets of drug-drug interactions between entecavir and JBP485. Plasma and urine concentrations of entecavir following intravenous and oral administration in vivo, uptake of entecavir in kidney slices and transfected cells in vitro, were determined by LC-MS/MS. Following intravenous co-administration of entecavir and JBP485 in rats, entecavir AUC increased 1.93-fold, t1/2β was prolonged 2.08-fold, CLP decreased 49%, CLR decreased 73%, and accumulated urinary excretion decreased 54%. However, following oral co-administration, the entecavir Tmax and Cmax were not affected; the degree of change in other pharmacokinetic parameters (AUC, t1/2β, CLP, and accumulated urinary excretion) was similar to that of intravenous administration. The uptake of entecavir was nearly identical in hPEPT1- as in vector-HELA cells. In rat kidney slices, uptake of entecavir was markedly inhibited by p-aminohippurate, benzylpenicillin, JBP485, and tetraethyl ammonium. In hOAT1- and hOAT3-HEK293 cells, uptake of entecavir was significantly higher compared to vector-HEK293 cells and was markedly inhibited by p-aminohippurate, benzylpenicillin, and JBP485. Km and Vmax values of entecavir were 250 μM and 0.83 nmol/mg protein/30s (OAT1) and 23 μM and 1.1 nmol/mg protein/30 s (OAT3), respectively. Entecavir is the substrate of OAT1, OAT3, and OCT. Moreover, OAT1 and OAT3 are the targets of DDI between entecavir and JBP485.
Collapse
Affiliation(s)
- Qinghan Xu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang L, Sweet DH. Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. AAPS JOURNAL 2012; 15:53-69. [PMID: 23054972 DOI: 10.1208/s12248-012-9413-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/12/2012] [Indexed: 01/25/2023]
Abstract
Organic solute flux across the basolateral and apical membranes of renal proximal tubule cells is a key process for maintaining systemic homeostasis. It represents an important route for the elimination of metabolic waste products and xenobiotics, as well as for the reclamation of essential compounds. Members of the organic anion transporter (OAT, SLC22) family expressed in proximal tubules comprise one pathway mediating the active renal secretion and reabsorption of organic anions. Many drugs, pesticides, hormones, heavy metal conjugates, components of phytomedicines, and toxins are OAT substrates. Thus, through transporter activity, the kidney can be a target organ for their beneficial or detrimental effects. Detailed knowledge of the OATs expressed in the kidney, their membrane targeting, substrate specificity, and mechanisms of action is essential to understanding organ function and dysfunction. The intracellular processes controlling OAT expression and function, and that can thus modulate kidney transport capacity, are also critical to this understanding. Such knowledge is also providing insight to new areas such as renal transplant research. This review will provide an overview of the OATs for which transport activity has been demonstrated and expression/function in the kidney observed. Examples establishing a role for renal OATs in drug clearance, food/drug-drug interactions, and renal injury and pathology are presented. An update of the current information regarding the regulation of OAT expression is also provided.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmaceutics, Virginia Commonwealth University, Medical College of Virginia Campus, 410 N 12th Street, PO Box 980533, Richmond, VA 23298, USA
| | | |
Collapse
|
22
|
Abstract
Previously established as a chemotherapeutic agent for decades, methotrexate has been adapted for use as a medical therapy for unruptured ectopic pregnancies. Its mechanism of action, competitive inhibition of folate-dependent steps in nucleic acid synthesis, effectively kills the rapidly dividing ectopic trophoblast. However, the same action on normal cells is the basis for many of its adverse effects.
Collapse
|