1
|
Muderrisoglu AE, Ciotkowska A, Rutz B, Hu S, Qian S, Tamalunas A, Stief CG, Hennenberg M. Dynamic phenotypic shifts and M2 receptor downregulation in bladder smooth muscle cells induced by mirabegron. Front Pharmacol 2024; 15:1446831. [PMID: 39114356 PMCID: PMC11303193 DOI: 10.3389/fphar.2024.1446831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Mirabegron is available for treatment of overactive bladder (OAB). However, mechanisms underlying symptom improvements and long-term effects on bladder smooth muscle cells are uncertain. Contractility and growth of bladder smooth muscle contribute to OAB, and depend on smooth muscle phenotypes, and on muscarinic receptor expression. Here, we examined prolonged exposure to mirabegron (20-48 h) on phenotype markers, muscarinic receptor expression, and phenotype-dependent functions in human bladder smooth muscle cells (hBSMC). Methods Expression of markers for contractile (calponin, MYH11) and proliferative (MYH10, vimentin) phenotypes, proliferation (Ki-67), and of muscarinic receptors were assessed by RT-PCR. Proliferation, viability, actin organization and contractions in cultured hBSMC were examined by EdU, CCK-8, phalloidin staining and matrix contraction assays. Results Calponin-1 mRNA decreased with 100 nM and 150 nM mirabegron applied for 20 h (0.56-0.6 fold of controls). Decreases were resistant to the β3-AR antagonist L-748,337 (0.34-0.55 fold, 100-150 nM, 20 h). After 40 h, decreases occured in the presence of L-748,337, but not without L-748,337. MYH11 mRNA increased with 150 nM mirabegron (40 h, 1.9 fold). This was partly preserved with L-748,337, but not observed after 20 h mirabegron exposure. Vimentin mRNA reduced with 150 nM mirabegron after 20 h, but not after 40 h, with and without L-748,337 (0.71-0.63 fold). MYH10 mRNA expression remained unaffected by mirabegron. Exposure to 150 nM mirabegron increased Ki-67 mRNA after 20 h in the presence of, but not without L-748,337, and after 40 h without, but not with L-748,337. Proliferation rates and actin organization were stable with 50-150 nM mirabegron (24 h, 48 h). Viability increased significantly after mirabegron exposure for 20 h, and by trend after 40 h, which was fully sensitive to L-748,337. M2 mRNA was reduced by 20 h mirabegron, which was resistant to L-748,337. Carbachol (3 µM) enhanced time-dependent contractions of hBSMC, which was inhibited by mirabegron (150 nM) in late phases (24 h), but not in early phases of contractions. Conclusion: Mirabegron induces dynamic phenotype alterations and M2 downregulation in hBSMC, which is paralleled by time-shifted anticontractile effects. Phenotype transitions may be involved in improvements of storage symptoms in OAB by mirabegron.
Collapse
Affiliation(s)
- A. E. Muderrisoglu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul, Türkiye
| | - A. Ciotkowska
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - B. Rutz
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - S. Hu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - S. Qian
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - A. Tamalunas
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - C. G. Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - M. Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Huang R, Yu Q, Tamalunas A, Stief CG, Hennenberg M. Ligand-Receptor Interactions and Structure-Function Relationships in Off-Target Binding of the β 3-Adrenergic Agonist Mirabegron to α 1A-Adrenergic Receptors. Int J Mol Sci 2024; 25:7468. [PMID: 39000575 PMCID: PMC11242030 DOI: 10.3390/ijms25137468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The β3-adrenoceptor agonist mirabegron is available for the treatment of storage symptoms of overactive bladder, including frequency, urgency, and incontinence. The off-target effects of mirabegron include binding to α1-adrenoceptors, which are central in the treatment of voiding symptoms. Here, we examined the structure-function relationships in the binding of mirabegron to a cryo-electron microscopy structure of α1A. The binding was simulated by docking mirabegron to a 3D structure of a human α1A-adrenoceptor (7YMH) using Autodock Vina. The simulations identified two binding states: slope orientation involving 10 positions and horizontal binding to the receptor surface involving 4 positions. No interactions occurred with positions constituting the α1A binding pocket, including Asp-106, Ser-188, or Phe-312, despite the positioning of the phenylethanolamine moiety in transmembrane regions close to the binding pocket by contact with Phe-288, -289, and Val-107. Contact with the unique positions of α1A included the transmembrane Met-292 during slope binding and exosite Phe-86 during horizontal binding. Exosite binding in slope orientation involved contact of the anilino part, rather than the aminothiazol end, to Ile-178, Ala-103, and Asn-179. In conclusion, contact with Met-292 and Phe-86, which are unique positions of α1A, accounts for mirabegron binding to α1A. Because of its lack of interactions with the binding pocket, mirabegron has lower affinity compared to α1A-blockers and no effects on voiding symptoms.
Collapse
Affiliation(s)
- Ru Huang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China; (R.H.); (Q.Y.)
| | - Qingfeng Yu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China; (R.H.); (Q.Y.)
| | - Alexander Tamalunas
- Department of Urology, LMU University Hospital, LMU Munich, 80539 Munich, Germany; (A.T.)
| | - Christian G. Stief
- Department of Urology, LMU University Hospital, LMU Munich, 80539 Munich, Germany; (A.T.)
| | - Martin Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, 80539 Munich, Germany; (A.T.)
- Urologische Klinik und Poliklinik, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
3
|
Abstract
Adrenoceptors importantly contribute to the physiological regulation of lower urinary tract (LUT) function and have become a target of several clinically successful treatments for major LUT diseases. In the bladder dome, β-adrenoceptor subtypes are found in multiple cell types and mediate relaxation of detrusor smooth muscle, perhaps partly indirectly by acting on afferent nerves and cells of the mucosa. β3-adrenoceptor agonists such as mirabegron and vibegron are used to treat overactive bladder syndrome. In the bladder trigone and urethra, α1-adrenoceptors cause contraction and thereby physiologically contribute to bladder outlet resistance. α1-adrenoceptors in the prostate also cause contraction and pathophysiologically elevate bladder outlet resistance leading to voiding dysfunction in benign prostatic hyperplasia. α1-adrenoceptor antagonist such as tamsulosin is widely used as a first-line option to treat LUT symptoms in men, but it remains unclear to which extent and how smooth muscle relaxation contributes to symptom relief.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Yamamoto S, Kusabuka H, Matsuzawa A, Maruyama I, Yamazaki T. Vibegron shows high selectivity and potent agonist activity for β3-adrenoceptors, irrespective of receptor density. PLoS One 2023; 18:e0290685. [PMID: 37656760 PMCID: PMC10473532 DOI: 10.1371/journal.pone.0290685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
β3-Adrenoceptor (AR) agonists are used to treat patients with an overactive bladder (OAB). Clinical proof-of-concept data have been obtained for the β3-AR agonists vibegron, mirabegron, solabegron, and ritobegron; however, the selectivities of these agents have not been compared directly under the same experimental conditions. Moreover, the bladders of some patients express lower β3-AR densities than those of healthy individuals, and the β3-AR density might be expected to affect agonist activity. This study assessed the β3-AR selectivities of four β3-AR agonists and examined the effects of β-AR density on their pharmacological profiles. Functional cellular assays were performed using Chinese hamster ovary-K1 cells expressing three human β-AR subtypes transfected with different amounts of plasmid DNA (0.1, 0.05, 0.025 μg/well). The half-maximal effective concentration values, intrinsic activities (IAs), and β3-AR selectivities of vibegron, mirabegron, solabegron, and ritobegron were calculated to assess their pharmacological profiles. The β3-AR selectivities of vibegron, mirabegron, solabegron, and ritobegron were >7937-, 517-, 21.3-, and >124-fold higher than for β1-ARs, and >7937-, 496-, >362- and 28.1-fold higher than for β2-ARs, respectively, under the same experimental conditions. The IAs of mirabegron, solabegron, and ritobegron decreased in line with decreasing receptor density, while the IA of vibegron was maintained at the same level as that of the full agonist isoproterenol at various β3-AR densities. Vibegron has high β3-AR selectivity and exhibits full agonist activity, regardless of the β3-AR density. These results suggest that vibegron is a highly effective and safe drug for treating OAB.
Collapse
Affiliation(s)
- Shota Yamamoto
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano, Japan
| | - Hotaka Kusabuka
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano, Japan
| | - Akane Matsuzawa
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano, Japan
| | - Itaru Maruyama
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano, Japan
| | - Takanobu Yamazaki
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Nogi-machi, Tochigi, Japan
| |
Collapse
|
5
|
Lim I, Chess-Williams R. Mirabegron attenuates porcine ureteral contractility via α1-adrenoceptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:839-847. [PMID: 35445849 PMCID: PMC9192402 DOI: 10.1007/s00210-022-02244-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The β3-agonist mirabegron is thought to induce relaxation of the detrusor muscle, contributing to the improvement of overactive bladder symptoms. There has been recent interest in purposing mirabegron as a medical expulsive therapy drug to improve the passage of smaller kidney stones by relaxing the ureteral smooth muscles. The aim of this study was to determine the effects of mirabegron on the activity of the ureter. Additionally, we investigated the receptor and mechanisms through which mirabegron exerts these effects. In vitro agonist-induced responses of isolated porcine distal ureteral tissues were measured in the absence and presence of mirabegron in organ bath experiments. The responses were expressed as frequency, area under the curve and maximum amplitude. Mirabegron at concentrations of 100 nM and lower failed to suppress phenylephrine- or 5-HT-induced contractions in the porcine ureteral strip. Mirabegron at 1 μM and 10 μM produced a rightward shift of phenylephrine concentration–response curves in these tissues. This effect of mirabegron (10 μM) was not present in 5-HT concentration–response curves. The mirabegron effect on phenylephrine-induced contractions was also not abolished by β-adrenoceptor antagonist SR 59230A (10 μM), β-adrenoceptor antagonist propranolol (10 μM), α2-adrenoceptor antagonist yohimbine (30 nM), and nitric oxide synthase inhibitor l-NNA (10 μM). The present results show that mirabegron suppresses ureteral contractile responses in the porcine ureter via α1-adrenoceptor antagonism, since their effects were not present when the tissues were contracted with 5-HT. Furthermore, the inhibitory effects by mirabegron were not affected by β3-adrenoceptor antagonists.
Collapse
Affiliation(s)
- Iris Lim
- Centre for Urology Research, Faculty of Health Science & Medicine, Bond University, Robina, QLD, 4229, Australia.
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Science & Medicine, Bond University, Robina, QLD, 4229, Australia
| |
Collapse
|
6
|
Huang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Antagonism of α 1-adrenoceptors by β 3-adrenergic agonists: Structure-function relations of different agonists in prostate smooth muscle contraction. Biochem Pharmacol 2022; 202:115148. [PMID: 35716783 DOI: 10.1016/j.bcp.2022.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Effects of β3-adrenergic agonists on prostate smooth muscle contraction are poorly characterized, although mirabegron is used for treatment of lower urinary tract symptoms. Off-target effects of several β3-adrenergic agonists include antagonism of α1-adrenoceptors. Proposed, but unconfirmed explanations include phenylethanolamine backbones, found in some β3-adrenergic agonists and imparting interaction with catecholamine binding pockets of adrenoceptors. Here, we examined effects of β3-adrenergic agonists on contractions of human prostate tissues, including ZD7114 (without phenylethanolamine moiety), ZD2079 (phenylethanolamine backbone), BRL37344 and CL316243 (chloride-substituted phenylethanolamine deriatives). Prostate tissues were obtained from radical prostatectomy. Contractions by α1-adrenergic agonists and electric field stimulation (EFS) were studied in an organ bath. ZD7114 (10 µM) right-shifted concentration responses curves for α1-adrenergic agonists, resulting in increased EC50 values for phenylephrine, methoxamine and noradrenaline up to one magnitude, without affecting Emax values. ZD7114 (10 µM) inhibited EFS-induced contractions, resulting in reduced Emax values. All effects of ZD7114 were resistant to the β3-adrenergic antagonist L-748337, including increases in EC50 values for α1-adrenergic agonists, up to more than two magnitudes. Using 10 µM, neither ZD2079, BRL37344 or CL316243 affected α1-adrenergic or EFS-induced contractions. At escalated concentrations, BRL37344 (200 µM) right-shifted concentration response curves for phenylephrine, increased EC50 values for phenylephrine, and inhibited EFS-induced contractions, while CL316243 (300 µM) did not affect phenylephrine- or EFS-induced contractions. In conclusion, phenylethanolamine backbones are not decisive to impart α1-adrenoceptor antagonism to β3-agonists. Effects of β3-adrenergic agonists on prostate smooth muscle contraction are limited to off-target effects, including α1-adrenoceptor antagonism by ZD7114 and BRL37344.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Raphaela Waidelich
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
7
|
Huang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Inhibition of Full Smooth Muscle Contraction in Isolated Human Detrusor Tissues by Mirabegron Is Limited to Off-Target Inhibition of Neurogenic Contractions. J Pharmacol Exp Ther 2022; 381:176-187. [PMID: 35153197 DOI: 10.1124/jpet.121.001029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/08/2022] [Indexed: 03/08/2025] Open
Abstract
Mirabegron is used for treatment of storage symptoms in overactive bladder (OAB) caused by spontaneous bladder smooth muscle contractions. However, owing to limitations in available studies using human tissues, central questions are still unresolved, including mechanisms underlying improvements by mirabegron and its anticontractile effects in the detrusor. Here, we assessed concentration-dependent mirabegron effects on contractions of human detrusor tissues in frequency-response curves and concentration-response curves for different cholinergic and noncholinergic agonists. Detrusor tissues were sampled from patients undergoing radical cystectomy. Contractions were induced by electric field stimulation (EFS) and by cumulative concentrations of cholinergic agonists, endothelin-1, and the thromboxane A2 analog U46619. EFS-induced contractions were inhibited using 10 µM mirabegron, but not using 1 µM. Inhibition by 10 µM mirabegron was resistant to the β 3-adrenergic antagonist L-748,337. Concentration-dependent contractions by carbachol were not inhibited by 1 µM or 10 µM mirabegron. Concentration-response curves for methacholine were slightly right-shifted by 10 µM, but not 1 µM mirabegron. Concentration-dependent contractions by endothelin-1 or U46619 were not changed by mirabegron. In contrast, the muscarinic antagonist tolterodine right-shifted concentration-response curves for carbachol and methacholine and inhibited EFS-induced contractions. In conclusion, inhibition of neurogenic contractions in isolated detrusor tissues by mirabegron requires concentrations highly exceeding known plasma levels during standard dosing and the known binding constant (Ki values) for β 3-adrenoceptors. Full contractions by cholinergic agonists, endothelin-1, and U46619 are not affected by therapeutic concentrations of mirabegron. Improvements of storage symptoms are most likely not imparted by inhibition of β 3-adrenoceptors in the bladder wall itself. SIGNIFICANCE STATEMENT: Mirabegron is used for overactive bladder (OAB) treatment, but the underlying mechanisms are unclear, and preclinical and clinical findings are controversial due to limitations in available studies. Our findings suggest that inhibition of detrusor contractions by mirabegron is limited to neurogenic contractions, which requires unphysiologic concentrations and does not involve β 3-adrenoceptors. Mechanisms accounting for improvements of OAB by mirabegron are located outside the urinary bladder.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/therapeutic use
- Acetanilides
- Carbachol/pharmacology
- Endothelin-1/pharmacology
- Female
- Humans
- Male
- Methacholine Chloride/metabolism
- Methacholine Chloride/pharmacology
- Methacholine Chloride/therapeutic use
- Muscle Contraction
- Muscle, Smooth
- Receptors, Adrenergic/metabolism
- Thiazoles
- Urinary Bladder, Overactive/drug therapy
- Urinary Bladder, Overactive/metabolism
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
8
|
Huang R, Liu Y, Ciotkowska A, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Concentration-dependent alpha 1-Adrenoceptor Antagonism and Inhibition of Neurogenic Smooth Muscle Contraction by Mirabegron in the Human Prostate. Front Pharmacol 2021; 12:666047. [PMID: 34248624 PMCID: PMC8264149 DOI: 10.3389/fphar.2021.666047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023] Open
Abstract
Introduction: Mirabegron is available for treatment of storage symptoms in overactive bladder, which may be improved by β3-adrenoceptor-induced bladder smooth muscle relaxation. In addition to storage symptoms, lower urinary tract symptoms in men include obstructive symptoms attributed to benign prostatic hyperplasia, caused by increased prostate smooth muscle tone and prostate enlargement. In contrast to the bladder and storage symptoms, effects of mirabegron on prostate smooth muscle contraction and obstructive symptoms are poorly understood. Evidence from non-human smooth muscle suggested antagonism of α1-adrenoceptors as an important off-target effect of mirabegron. As α1-adrenergic contraction is crucial in pathophysiology and medical treatment of obstructive symptoms, we here examined effects of mirabegron on contractions of human prostate tissues and on proliferation of prostate stromal cells. Methods: Contractions were induced in an organ bath. Effects of mirabegron on proliferation, viability, and cAMP levels in cultured stromal cells were examined by EdU assays, CCK-8 assays and enzyme-linked immunosorbent assay. Results: Mirabegron in concentrations of 5 and 10 μM, but not 1 µM inhibited electric field stimulation-induced contractions of human prostate tissues. Mirabegron in concentrations of 5 and 10 µM shifted concentration response curves for noradrenaline-, methoxamine- and phenylephrine-induced contractions to the right, including recovery of contractions at high concentrations of α1-adrenergic agonists, increased EC50 values, but unchanged Emax values. Rightshifts of noradrenaline concentration response curves and inhibition of EFS-induced contractions were resistant to L-748,337, l-NAME, and BPIPP. 1 µM mirabegron was without effect on α1-adrenergic contractions. Endothelin-1- and U46619-induced contractions were not affected or only inhibited to neglectable extent. Effects of mirabegron (0.5–10 µM) on proliferation and viability of stromal cells were neglectable or small, reaching maximum decreases of 8% in proliferation assays and 17% in viability assays. Mirabegron did not induce detectable increases of cAMP levels in cultured stromal cells. Conclusion: Mirabegron inhibits neurogenic and α1-adrenergic human prostate smooth muscle contractions. This inhibition may be based on antagonism of α1-adrenoceptors by mirabegron, and does not include activation of β3-adrenoceptors and requires concentrations ranging 50-100fold higher than plasma concentrations reported from normal dosing. Non-adrenergic contractions and proliferation of prostate stromal cells are not inhibited by mirabegron.
Collapse
Affiliation(s)
- Ru Huang
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | | | | | | | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Michel MC. α 1-adrenoceptor activity of β-adrenoceptor ligands - An expected drug property with limited clinical relevance. Eur J Pharmacol 2020; 889:173632. [PMID: 33038419 DOI: 10.1016/j.ejphar.2020.173632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Many β-adrenoceptor agonists and antagonists including several clinically used drugs have been reported to also exhibit binding to α1-adrenoceptors. Such promiscuity within the adrenoceptor family appears to occur more often than off-target effects of drugs in general. It should not be considered surprising based on the amino acid homology among the nine adrenoceptor subtypes including the counter-ions for binding the endogenous catecholamines. When β-adrenoceptor ligands also bind to α1-adrenoceptors, they almost always act as antagonists, regardless of being agonists or antagonists at the β-adrenoceptor. The α1-adrenoceptor affinity of β-adrenoceptor ligands in most cases is at least one, and often more log units lower than at their cognate receptor. Consistent evidence from multiple investigators indicates that β-adrenoceptor ligands relatively have the highest affinity for α1A- and lowest for α1B-adrenoceptors. While promiscuity among adrenoceptor subtypes causes misleading interpretation of experimental in vitro data, it is proposed based on the law of mass action that α1-adrenoceptor binding of β-adrenoceptor ligands rarely contributes to the clinical profile of such drugs, particularly if they are agonists at the β-adrenoceptor.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. of Pharmacology, Johannes Gutenberg University, Universitätsmedizin Main, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
10
|
Okeke K, Michel-Reher MB, Gravas S, Michel MC. Desensitization of cAMP Accumulation via Human β3-Adrenoceptors Expressed in Human Embryonic Kidney Cells by Full, Partial, and Biased Agonists. Front Pharmacol 2019; 10:596. [PMID: 31263412 PMCID: PMC6590479 DOI: 10.3389/fphar.2019.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Abstract
β3-Adrenoceptors couple not only to cAMP formation but, at least in some cell types, also to alternative signaling pathways such as phosphorylation of extracellular signal-regulated kinase (ERK). β3-Adrenoceptor agonists are used in long-term symptomatic treatment of the overactive bladder syndrome; it is only poorly understood which signaling pathway mediates the clinical response and whether it undergoes agonist-induced desensitization. Therefore, we used human embryonic kidney cells stably transfected with human β3-adrenoceptors to compare coupling of ligands with various degrees of efficacy, including biased agonists, to cAMP formation and ERK phosphorylation, particularly regarding desensitization. Ligands stimulated cAMP formation with a numerical rank order of isoprenaline ≥ L 755,507 ≥ CL 316,243 > solabegron > SR 59,230 > L 748,337. Except for the weakest agonist, L 748,337, pretreatment with any ligand reduced cAMP responses to freshly added isoprenaline or forskolin to a similar extent. On the other hand, we were unable to detect ERK phosphorylation despite testing a wide variation of conditions. We conclude that a minor degree of efficacy for cAMP formation may be sufficient to induced full desensitization of that response. Transfected human embryonic kidney cells are not suitable to study desensitization of ERK phosphorylation by β3-adrenoceptor stimulation.
Collapse
Affiliation(s)
- Katerina Okeke
- Department of Pharmacology, Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Urology, University of Thessaly, Larissa, Greece
| | | | - Stavros Gravas
- Department of Urology, University of Thessaly, Larissa, Greece
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Loh RKC, Formosa MF, La Gerche A, Reutens AT, Kingwell BA, Carey AL. Acute metabolic and cardiovascular effects of mirabegron in healthy individuals. Diabetes Obes Metab 2019; 21:276-284. [PMID: 30203462 DOI: 10.1111/dom.13516] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
Abstract
AIMS To quantify acute energy expenditure, supraclavicular skin temperature and cardiovascular responses to four doses of the β3-adrenoceptor agonist, mirabegron. MATERIALS AND METHODS A total of 17 individuals (11 men, six women) participated in this ascending-dose study, receiving single 50-, 100-, 150- and 200-mg doses of mirabegron on four separate days with 3 to 14 days wash-out between each dose. All variables were measured each visit from baseline to 180 minutes post mirabegron treatment. To determine brown adipose tissue (BAT) thermogenic efficacy at each dose, energy expenditure and supraclavicular skin temperature were compared from baseline to 180 minutes post mirabegron treatment. To examine safety, changes in cardiovascular variables at 100, 150 and 200 mg were compared with the standard clinical dose of 50 mg. RESULTS Energy expenditure significantly increased after the 100- (35.6 ± 5.4 kJ/h) and 200-mg (35.6 ± 13.1 kJ/h) doses (P ≤ 0.05), and trended towards an increase after 150 mg (24.1 ± 13.6 kJ/h). Supraclavicular skin temperature increased after 50- (0.22 ± 0.1°C), 100- (0.30 ± 0.1°C) and 150-mg mirabegron doses (0.29 ± 0.1°C; P ≤ 0.05). The change in systolic blood pressure was greater after 150- (7.1 ± 1.3 mm Hg) and 200-mg doses (9.3 ± 1.9 mm Hg) than after the 50-mg dose (2.2 ± 1.3 mm Hg; P ≤ 0.05). The change in heart rate was greater after 200 mg (9.0 ± 2.2 bpm) compared with 50 mg (2.9 ± 1.4 bpm; P ≤ 0.05). CONCLUSIONS A 100-mg dose of mirabegron increases energy expenditure and supraclavicular skin temperature in a β3-adrenoceptor-specific manner, without the off-target elevations in blood pressure or heart rate observed at higher doses.
Collapse
Affiliation(s)
- Rebecca K C Loh
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Melissa F Formosa
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andre La Gerche
- Sports Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anne T Reutens
- Clinical Diabetes and Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Andrew L Carey
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Michel MC. How β3 -adrenoceptor-selective is mirabegron? Br J Pharmacol 2016; 173:429-30. [PMID: 26814171 DOI: 10.1111/bph.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/04/2015] [Indexed: 01/15/2023] Open
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
13
|
Thiagamoorthy G, Cardozo L, Robinson D. Current and future pharmacotherapy for treating overactive bladder. Expert Opin Pharmacother 2016; 17:1317-25. [DOI: 10.1080/14656566.2016.1186645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Michel MC, Korstanje C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016; 159:66-82. [PMID: 26808167 DOI: 10.1016/j.pharmthera.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β3-Adrenoceptor agonists were originally considered as a promising drug class for the treatment of obesity and/or type 2 diabetes. When these development efforts failed, they were repositioned for the treatment of the overactive bladder syndrome. Based on the example of the β3-adrenoceptor agonist mirabegron, but also taking into consideration evidence obtained with ritobegron and solabegron, we discuss challenges facing a translational pharmacology program accompanying clinical drug development for a first-in-class molecule. Challenges included generic ones such as ligand selectivity, species differences and drug target gene polymorphisms. Challenges that are more specific included changing concepts of the underlying pathophysiology of the target condition while clinical development was under way; moreover, a paucity of public domain tools for the study of the drug target and aspects of receptor agonists as drugs had to be addressed. Nonetheless, a successful first-in-class launch was accomplished. Looking back at this translational pharmacology program, we conclude that a specifically tailored and highly flexible approach is required. However, several of the lessons learned may also be applicable to translational pharmacology programs in other indications.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
| | - Cees Korstanje
- Department of Drug Discovery Science & Management-Europe, Astellas Pharma Europe R&D, Leiden, The Netherlands
| |
Collapse
|
15
|
Andersson KE. Drug therapy of overactive bladder--what is coming next? Korean J Urol 2015; 56:673-9. [PMID: 26495067 PMCID: PMC4610893 DOI: 10.4111/kju.2015.56.10.673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023] Open
Abstract
After the approval and introduction of mirabegron, tadalafil, and botulinum toxin A for treatment of lower urinary tract symptoms/overactive bladder, focus of interest has been on their place in therapy versus the previous gold standard, antimuscarinics. However, since these agents also have limitations there has been increasing interest in what is coming next - what is in the pipeline? Despite progress in our knowledge of different factors involved in both peripheral and central modulation of lower urinary tract dysfunction, there are few innovations in the pipe-line. Most developments concern modifications of existing principles (antimuscarinics, β3-receptor agonists, botulinum toxin A). However, there are several new and old targets/drugs of potential interest for further development, such as the purinergic and cannabinoid systems and the different members of the transient receptor potential channel family. However, even if there seems to be good rationale for further development of these principles, further exploration of their involvement in lower urinary tract function/dysfunction is necessary.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA. ; Aarhus Institute for Advanced Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Thiagamoorthy G, Giarenis I, Cardozo L. Early investigational β3 adreno-receptor agonists for the management of the overactive bladder syndrome. Expert Opin Investig Drugs 2015; 24:1299-306. [DOI: 10.1517/13543784.2015.1076390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|