1
|
Pan C, Lee LTO. Membrane drug transporters in cancer: From chemoresistance mechanism to therapeutic strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189272. [PMID: 39863184 DOI: 10.1016/j.bbcan.2025.189272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs. As the mechanism has been better understood and genetic engineering technology progressed quickly in recent years, some novel targeting strategies have come to light. This article summarizes the regulatory mechanisms of membrane drug transporters and provides an extensive review of current approaches to address transporters-mediated chemoresistance. These strategies include the use of chemical inhibitors to block efflux transporters, the development of copper chelators to enhance platinum drug uptake, the delivery of genetic drugs to alter transporter expression, the regulation of transcription and post-translational modifications. Additionally, we provide information of the clinical trial performance of the related targeting strategies, along with the ongoing challenges. Even though some clinical trials failed due to unexpected side effects and limited therapeutic efficacy, the advent of targeting membrane drug transporters still presents a hopeful path for overcoming chemoresistance.
Collapse
Affiliation(s)
- Chao Pan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China.
| |
Collapse
|
2
|
Beavers CJ, Ferrari AM. Cardio-oncology Drug Interactions: A Primer for Clinicians on Select Cardiotoxic Oncologic Therapies. Cardiol Clin 2025; 43:169-194. [PMID: 39551557 DOI: 10.1016/j.ccl.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cardio-oncology is an emerging multidisciplinary field intended to mitigate and manage cardiovascular side effects and risks associated with cancer therapies. Clinician awareness of drug interaction management among cancer treatments, cardiovascular medications, and supportive care agents is important for optimizing efficacy and safety. Historically, chemotherapies have been associated with pharmacodynamic interactions with few, but important, pharmacokinetic interactions. The advent of oral targeted inhibitors has introduced more complex pharmacokinetic interactions, especially via cytochrome P450 pathways. Given the accelerated development of oncology therapies, clinicians need to be familiar with reviewing multiple sources for interaction information as well as adjusting and monitoring regimens when contending with drug interaction challenges.
Collapse
Affiliation(s)
- Craig J Beavers
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 789 South Limestone, Lexington, KY 40508, USA. https://twitter.com/beaverspharmd
| | - Alana M Ferrari
- Department of Pharmacy, University of Virginia, 1215 Lee Street, Charlottesville, VA 22903, USA.
| |
Collapse
|
3
|
Hulin A, Gelé T, Fenioux C, Kempf E, Sahali D, Tournigand C, Ollero M. Pharmacology of Tyrosine Kinase Inhibitors: Implications for Patients with Kidney Diseases. Clin J Am Soc Nephrol 2024; 19:927-938. [PMID: 38079278 PMCID: PMC11254026 DOI: 10.2215/cjn.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tyrosine kinase inhibitors (TKI) have introduced a significant advancement in cancer management. These compounds are administered orally, and their absorption holds a pivotal role in determining their variable efficacy. They exhibit extensive distribution within the body, binding strongly to both plasma and tissue proteins. Often reliant on efflux and influx transporters, TKI undergo primary metabolism by intestinal and hepatic cytochrome P450 enzymes, with nonkidney clearance being predominant. Owing to their limited therapeutic window, many TKI display considerable intraindividual and interindividual variability. This review offers a comprehensive analysis of the clinical pharmacokinetics of TKI, detailing their interactions with drug transporters and metabolic enzymes, while discussing potential clinical implications. The prevalence of kidney conditions, such as AKI and CKD, among patients with cancer is explored in their effect on TKI pharmacokinetics. Finally, the potential nephrotoxicity associated with TKI is also examined.
Collapse
Affiliation(s)
- Anne Hulin
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Thibaut Gelé
- Pharmacology Laboratory, University Medicine Department of Biology-Pathology, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| | - Charlotte Fenioux
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Emmanuelle Kempf
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Dil Sahali
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Nephrology Unit, University Medicine Department of Medicine, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Christophe Tournigand
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
- Oncology Unit, University Medicine Department of Cancer, AP-HP, GH Henri Mondor, University Paris-Est Creteil, Créteil, France
| | - Mario Ollero
- University Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France
| |
Collapse
|
4
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
6
|
Huang KM, Hu S, Sparreboom A. Drug transporters and anthracycline-induced cardiotoxicity. Pharmacogenomics 2018; 19:883-888. [DOI: 10.2217/pgs-2018-0056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The solute carrier superfamily comprises of uptake transporters that can contribute to the absorption and elimination of a broad array of clinically important drugs. Recent studies have suggested that the tissue-specific expression of these transporters may have important consequences for an individual's susceptibility to drug-induced organ damage or to drug–drug interactions. Polymorphic variants have been identified in genes encoded by this family, and some of these have been associated with functional changes in transport function and response to anthracycline-induced toxicity and efficacy. Here, we review recent advances in the role solute carrier transporters play in anthracycline-induced cardiotoxicity, highlight potential implications of genetic variants that may contribute to drug response and discuss novel technologies to study mechanisms of anthracycline transport.
Collapse
Affiliation(s)
- Kevin M Huang
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shuiying Hu
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Lin L, Li L, Chen X, Zeng B, Lin T. Preliminary evaluation of the potential role of β-elemene in reversing erlotinib-resistant human NSCLC A549/ER cells. Oncol Lett 2018; 16:3380-3388. [PMID: 30127938 DOI: 10.3892/ol.2018.8980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
β-elemene (β-ELE) is a natural compound extracted from Curcuma zedoaria Roscoe that has shown promise as a novel anticancer drug to treat malignant tumors. Recent studies have demonstrated that β-ELE can reverse the drug resistance of tumor cells. To the best of our knowledge, there are no reports concerning the reversal of erlotinib resistance by β-ELE in human non-small cell lung cancer (NSCLC) cells. Therefore, the present study investigated the effects of β-ELE on erlotinib-resistant human NSCLC A549/ER cells in vitro and its possible mechanism of action. The sensitivity of A549/ER cells to erlotinib, the cytotoxicity of β-ELE on the growth of A549/ER cells and the effects of β-ELE on the reversal of drug resistance in A549/ER cells were determined by MTT assay. The cell apoptosis rate, cell cycle phase distribution and intracellular rhodamine 123 (Rh123) fluorescence intensity were detected by flow cytometry. The expression level of P-glycoprotein (P-gp) was detected by western blotting. A549/ER cells had a stable drug-resistance to erlotinib. β-ELE inhibited the proliferation of A549/ER cells in a time- and dose-dependent manner, enhanced the sensitivity of A549/ER cells to erlotinib and reversed the drug resistance in A549/ER cells. Treatment with 15 µg/ml β-ELE combined with 10 µmol/l erlotinib caused an increased rate of cell apoptosis and G0/G1 phase arrest. Furthermore, β-ELE reduced the efflux of Rh123 from A549/ER cells, increased the intracellular accumulation of Rh123 and decreased the expression of P-gp. The results of the present study indicated that β-ELE could reverse drug resistance in erlotinib-resistant human NSCLC A549/ER cells in vitro through a mechanism that may involve the decreased expression of P-gp, inhibition of P-gp dependent drug efflux and the increased intracellular concentration of anticancer drugs.
Collapse
Affiliation(s)
- Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lianbin Li
- Department of Internal Medicine, Xiamen Haicang Hospital, Xiamen, Fujian 361026, P.R. China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Bangwei Zeng
- Department of Hospital Infection Management, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Tingyan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
8
|
El-Khouly FE, van Vuurden DG, Stroink T, Hulleman E, Kaspers GJL, Hendrikse NH, Veldhuijzen van Zanten SEM. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates. Front Oncol 2017; 7:254. [PMID: 29164054 PMCID: PMC5670105 DOI: 10.3389/fonc.2017.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)-carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole-are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG.
Collapse
Affiliation(s)
- Fatma E El-Khouly
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands.,Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, Netherlands
| | - Dannis G van Vuurden
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Thom Stroink
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
9
|
Beretta GL, Cassinelli G, Pennati M, Zuco V, Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem 2017; 142:271-289. [PMID: 28851502 DOI: 10.1016/j.ejmech.2017.07.062] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
Resistance to conventional and target specific antitumor drugs still remains one of the major cause of treatment failure and patience death. This condition often involves ATP-binding cassette (ABC) transporters that, by pumping the drugs outside from cancer cells, attenuate the potency of chemotherapeutics and negatively impact on the fate of anticancer therapy. In recent years, several tyrosine kinase inhibitors (TKIs) (e.g., imatinib, nilotinib, dasatinib, ponatinib, gefitinib, erlotinib, lapatinib, vandetanib, sunitinib, sorafenib) have been reported to interact with ABC transporters (e.g., ABCB1, ABCC1, ABCG2, ABCC10). This finding disclosed a very complex scenario in which TKIs may behave as substrates or inhibitors depending on the expression of specific pumps, drug concentration, affinity for transporters and types of co-administered agents. In this context, in-depth investigation on TKI chemosensitizing functions might provide a strong rationale for combining TKIs and conventional therapeutics in specific malignancies. The reposition of TKIs as antagonists of ABC transporters opens a new way towards anticancer therapy and clinical strategies aimed at counteracting drug resistance. This review will focus on some paradigmatic examples of the complex and not yet fully elucidated interaction between clinical available TKIs (e.g. BCR-ABL, EGFR, VEGFR inhibitors) with the main ABC transporters implicated in multidrug resistance.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| | - Laura Gatti
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, Italy.
| |
Collapse
|
10
|
Bani M, Decio A, Giavazzi R, Ghilardi C. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists. Angiogenesis 2017; 20:233-241. [DOI: 10.1007/s10456-017-9549-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
|
11
|
Kigen G, Edwards G. Intracellular accumulation of Praziquantel in T lymphoblastoid cell lines, CEM (parental) and CEMVBL(P-gp-overexpressing). BMC Pharmacol Toxicol 2016; 17:37. [PMID: 27522191 PMCID: PMC4983413 DOI: 10.1186/s40360-016-0079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background Praziquantel (PZQ) is an antihelminthic drug whose P-glycoprotein (P-gp) substrate specificity has not been conclusively characterized. We investigated its specificity by comparing its in vitro intracellular accumulation in CEM (parental), and CEMvbl cells which over express P-gp, a drug efflux transporter. Saquinavir (SQV), a known substrate of efflux transporters was used as control. Methods A reversed phase liquid chromatography method was developed to simultaneously quantify PZQ and SQV in cell culture media involving involved a liquid - liquid extraction followed by ultra-high performance liquid chromatography using a Hypurity C18 column and ultraviolet detection set at a wavelength of 215 nm. The mobile phase consisted of ammonium formate, acetonitrile and methanol (57:38:5 v/v). Separation was facilitated via isocratic elution at a flow rate of 1.5 ml/min, with clozapine (CLZ) as internal standard. This was validated over the concentration range of 1.6 to 25.6 μM for all analytes. Intracellular accumulation of SQV in CEMvbl was significantly lower compared to that in CEM cells (0.1 ± 0.031 versus 0.52 ± 0.046, p = 0.03 [p <0.05]). Results Accumulation of PZQ in both cell lines cells were similar (0.05 ± 0.005 versus 0.04 ± 0.009, p = 0.4) suggesting that it is not a substrate of P-gp in CEM cells. In presence tariquidar, a known inhibitor of P-gp, the intracellular accumulation of SQV in CEMvbl cells increased (0.52 ± 0.068 versus 0.61 ± 0.102, p = 0.34 in CEM cells and 0.09 ± 0.015 versus 0.56 ± 0.089, p = 0.029 [p < 0.05] in CEMvbl cells). PZQ did not significantly affect the accumulation of SQV in either CEM (0.52 ± 0.068 versus 0.54 ± 0.061, p = 0.77), or in CEMvbl cells (0.09 ± 0.015 versus 0.1 ± 0.031, p = 0.89) cells compared to tariquidar, implying that PZQ is not an inhibitor of P-gp in CEMvbl cells. Conclusions PZQ is neither a substrate nor an inhibitor of the efflux drug transporter P-gp in T-lymphoblastoid cells, CEM and CEMvbl. We also report a simple, accurate and precise method for simultaneous quantification of PZQ and SQV.
Collapse
Affiliation(s)
- Gabriel Kigen
- Department of Pharmacology and Toxicology, Moi University School of Medicine, P.O. Box 4606, 30100, Eldoret, Kenya. .,Department Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK.
| | - Geoffrey Edwards
- Department Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| |
Collapse
|
12
|
Ntanasis-Stathopoulos I, Fotopoulos G, Tzanninis IG, Kotteas EA. The Emerging Role of Tyrosine Kinase Inhibitors in Ovarian Cancer Treatment: A Systematic Review. Cancer Invest 2016; 34:313-39. [PMID: 27486869 DOI: 10.1080/07357907.2016.1206117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present systematic review summarizes current evidence regarding the mechanisms of action, the efficacy, and the adverse effects of tyrosine kinase inhibitors (TKIs) in ovarian cancer patients. Phase II and III clinical trials were sought in the PubMed database and in the Clinical Trials.gov registry through September 30, 2015. Seventy-five clinical trials regarding TKIs targeting mainly vascular endothelial growth factor receptor, epidermal growth factor receptor, platelet-derived growth factor receptor, and sarcoma tyrosine kinase (Src) were yielded. The most promising results were noted with cediranib, nintedanib, and pazopanib. However, drawing universal conclusions about the potential integration of TKIs in ovarian cancer therapy remains elusive. Furthermore, emerging challenges and directions for the future research are critically discussed.
Collapse
Affiliation(s)
| | - George Fotopoulos
- a Oncology Unit, Sotiria General Hospital , Athens School of Medicine , Athens , Greece
| | | | - Elias A Kotteas
- a Oncology Unit, Sotiria General Hospital , Athens School of Medicine , Athens , Greece
| |
Collapse
|
13
|
Abstract
As a new antitumor drug, simotinib hydrochloride is prescribed for prolonged periods, often to patients with comorbidities. Therefore, the risk for developing drug resistance and drug-drug interactions between simotinib and other agents has to be taken into consideration. As P-glycoprotein (P-gp) is an efflux transporter, which plays a significant role in drug resistance and influences the pharmacological properties and toxicities of the drugs it interacts with, the interactions between simotinib and P-gp were investigated. Cytotoxicity was measured using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Intracellular drug concentrations were detected by high-performance liquid chromatography, fluorescence-activated cell sorting and using a fluorescence reader. P-gp ATPase activity was measured using the Pgp-Glo assay, and intracellular pH was assessed using the fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl. The expression and transcription of P-gp were detected by western blotting and the luciferase assay. Simotinib has no cross-resistance to P-gp substrates, and its efflux rate was independent of either the P-gp expression or the coadministered P-gp substrate. Simotinib reversed chemotherapeutic agent resistance in a short time by increasing the intracellular concentration of the chemotherapeutic agent and blocked rhodamine 123 efflux. Further studies demonstrated that simotinib inhibited P-gp activity by modulating its ATPase activity and the intracellular pH. Although simotinib induced P-gp expression after extended treatment, the induced expression of P-gp had little impact on drug resistance. Simotinib is not a substrate of P-gp. As a modulator, it functions mainly as an inhibitor of P-gp by modulating the intracellular pH and ATPase activity, although it also induces P-gp expression after extended treatment.
Collapse
|
14
|
Mechanisms of Drug Resistance in Veterinary Oncology- A Review with an Emphasis on Canine Lymphoma. Vet Sci 2015; 2:150-184. [PMID: 29061939 PMCID: PMC5644636 DOI: 10.3390/vetsci2030150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Drug resistance (DR) is the major limiting factor in the successful treatment of systemic neoplasia with cytotoxic chemotherapy. DR can be either intrinsic or acquired, and although the development and clinical implications are different, the underlying mechanisms are likely to be similar. Most causes for DR are pharmacodynamic in nature, result from adaptations within the tumor cell and include reduced drug uptake, increased drug efflux, changes in drug metabolism or drug target, increased capacity to repair drug-induced DNA damage or increased resistance to apoptosis. The role of active drug efflux transporters, and those of the ABC-transporter family in particular, have been studied extensively in human oncology and to a lesser extent in veterinary medicine. Methods reported to assess ABC-transporter status include detection of the actual protein (Western blot, immunohistochemistry), mRNA or ABC-transporter function. The three major ABC-transporters associated with DR in human oncology are ABCB1 or P-gp, ABCC1 or MRP1, and ABCG2 or BCRP, and have been demonstrated in canine cell lines, healthy dogs and dogs with cancer. Although this supports a causative role for these ABC-transporters in DR cytotoxic agents in the dog, the relative contribution to the clinical phenotype of DR in canine cancer remains an area of debate and requires further prospective studies.
Collapse
|
15
|
Chu C, Noël-Hudson M, Bénard J, Ha-Duong T, Allaoui F, Farinotti R, Bonhomme-Faivre L. Cetuximab directly inhibits P-glycoprotein function in vitro independently of EGFR binding. Eur J Pharm Sci 2015; 76:18-26. [DOI: 10.1016/j.ejps.2015.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 12/17/2022]
|
16
|
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AHH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 2015; 15:71. [PMID: 26180516 PMCID: PMC4502609 DOI: 10.1186/s12935-015-0221-1] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in modifying drug resistance with respect to the treatment of cancer.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Megan Walsh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | - Adil H H Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Gamal O Elhassan
- Uneizah Pharmacy College, Qassim University, AL-Qassim, Kingdom of Saudi Arabia ; Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | | | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Hegedüs C, Hegedüs T, Sarkadi B. The Role of ABC Multidrug Transporters in Resistance to Targeted Anticancer Kinase Inhibitors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther Drug Monit 2014; 35:562-87. [PMID: 24052062 DOI: 10.1097/ftd.0b013e318292b931] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The treatment of many malignancies has been improved in recent years by the introduction of molecular targeted therapies. These drugs interact preferentially with specific targets that are mutated and/or overexpressed in malignant cells. A group of such targets are the tyrosine kinases, against which a number of inhibitors (tyrosine kinase inhibitors, TKIs) have been developed. Imatinib, a TKI with targets that include the breakpoint cluster region-Abelson (bcr-abl) fusion protein kinase and mast/stem cell growth factor receptor kinase (c-Kit), was the first clinically successful drug of this type and revolutionized the treatment and prognosis of chronic myeloid leukemia and gastrointestinal stromal tumors. This success paved the way for the development of other TKIs for the treatment of a range of hematological malignancies and solid tumors. To date, 14 TKIs have been approved for clinical use and many more are under investigation. All these agents are given orally and are substrates of a range of drug transporters and metabolizing enzymes. In addition, some TKIs are capable of inhibiting their own transporters and metabolizing enzymes, making their disposition and metabolism at steady-state unpredictable. A given dose can therefore give rise to markedly different plasma concentrations in different patients, favoring the selection of resistant clones in the case of subtherapeutic exposure, and increasing the risk of toxicity if dosage is excessive. The aim of this review was to summarize current knowledge of the clinical pharmacokinetics and known adverse effects of the TKIs that are available for clinical use and to provide practical guidance on the implications of these data in patient management, in particular with respect to therapeutic drug monitoring.
Collapse
|
19
|
Noguchi K, Katayama K, Sugimoto Y. Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:53-64. [PMID: 24523596 PMCID: PMC3921828 DOI: 10.2147/pgpm.s38295] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Adenine triphosphate (ATP)-binding cassette (ABC) transporter proteins, such as ABCB1/P-glycoprotein (P-gp) and ABCG2/breast cancer resistance protein (BCRP), transport various structurally unrelated compounds out of cells. ABCG2/BCRP is referred to as a “half-type” ABC transporter, functioning as a homodimer, and transports anticancer agents such as irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38), gefitinib, imatinib, methotrexate, and mitoxantrone from cells. The expression of ABCG2/BCRP can confer a multidrug-resistant phenotype on cancer cells and affect drug absorption, distribution, metabolism, and excretion in normal tissues, thus modulating the in vivo efficacy of chemotherapeutic agents. Clarification of the substrate preferences and structural relationships of ABCG2/BCRP is essential for our understanding of the molecular mechanisms underlying its effects in vivo during chemotherapy. Its single-nucleotide polymorphisms are also involved in determining the efficacy of chemotherapeutics, and those that reduce the functional activity of ABCG2/BCRP might be associated with unexpected adverse effects from normal doses of anticancer drugs that are ABCG2/BCRP substrates. Importantly, many recently developed molecular-targeted cancer drugs, such as the tyrosine kinase inhisbitors, imatinib mesylate, gefitinib, and others, can also interact with ABCG2/BCRP. Both functional single-nucleotide polymorphisms and inhibitory agents of ABCG2/BCRP modulate the in vivo pharmacokinetics and pharmacodynamics of these molecular cancer treatments, so the pharmacogenetics of ABCG2/BCRP is an important consideration in the application of molecular-targeted chemotherapies.
Collapse
Affiliation(s)
- Kohji Noguchi
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| |
Collapse
|
20
|
Influence of the multidrug transporter P-glycoprotein on the intracellular pharmacokinetics of vandetanib. Eur J Drug Metab Pharmacokinet 2013; 38:149-57. [DOI: 10.1007/s13318-013-0123-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/13/2013] [Indexed: 01/15/2023]
|
21
|
Zandvliet M, Teske E, Chapuis T, Fink-Gremmels J, Schrickx JA. Masitinib reverses doxorubicin resistance in canine lymphoid cells by inhibiting the function of P-glycoprotein. J Vet Pharmacol Ther 2013; 36:583-7. [DOI: 10.1111/jvp.12039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/09/2013] [Indexed: 12/01/2022]
Affiliation(s)
- M. Zandvliet
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - E. Teske
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | | | - J. Fink-Gremmels
- IRAS Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - J. A. Schrickx
- IRAS Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| |
Collapse
|