1
|
Galvão GF, Maríngolo ICB, Martins YA, Villarruel Muñoz JB, Fantucci MZ, da Silva RR, Rocha EM, Manaia EB, Ponchel G, Lopez RFV. Iontophoresis impact on corneal properties using an ex vivo bovine eye model. Methods 2025; 238:74-83. [PMID: 40101842 DOI: 10.1016/j.ymeth.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025] Open
Abstract
This study addresses the challenge of low drug bioavailability in topical ocular administration by developing and validating an ex vivo bovine eye model chamber to evaluate the effects of iontophoresis on drug delivery and corneal properties. Transepithelial electrical resistance (TEER) was assessed as a predictor of corneal epithelial integrity in dissected bovine eyes. TEER measurements were correlated with methylene blue permeation, confirming a threshold of 4.2 kOhm·cm2 as an indicator of epithelial integrity. The model chamber enabled the application of drug solutions around a defined area of the cornea without leakage, facilitating the placement of electrodes and the application of constant electric currents. Applying iontophoresis at 2 mA/cm2 for 6 min significantly increased rhodamine B penetration into the cornea by nearly sixfold compared to passive diffusion (approximately 1.3 µg/cm2 vs. 0.24 µg/cm2), allowing detectable drug levels in the aqueous humor (27.9 ± 0.5 ng/mL). Morphological analyses revealed temporary changes in the cornea, including a 2.3-fold increase in surface roughness (from 44.6 nm to 105.3 nm) and mild collagen disorganization in the stroma, while Bowman's membrane remained intact. A significant increase in corneal stiffness was noted, with a 200 % rise in the area under the stress-strain curve after iontophoresis. These findings provide insights into iontophoresis-induced changes and highlight the model's potential for optimizing ocular drug delivery systems. Additionally, the model aligns with the 3Rs principles and could be instrumental in advancing the understanding of anterior segment diseases driven by structural and biomechanical alterations.
Collapse
Affiliation(s)
- Gabriela Fávero Galvão
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17, Avenue des Sciences, Orsay 91400, France
| | | | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ricardo Roberto da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Eloísa Berbel Manaia
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17, Avenue des Sciences, Orsay 91400, France
| | - Gilles Ponchel
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17, Avenue des Sciences, Orsay 91400, France
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Helmy AM. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Huang D, Chen YS, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev 2018; 126:96-112. [PMID: 28916492 DOI: 10.1016/j.addr.2017.09.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
Overcoming the physiological barriers in the eye remains a key obstacle in the field of ocular drug delivery. While ocular barriers naturally have a protective function, they also limit drug entry into the eye. Various pharmaceutical strategies, such as novel formulations and physical force-based techniques, have been investigated to weaken these barriers and transport therapeutic agents effectively to both the anterior and the posterior segments of the eye. This review summarizes and discusses the recent research progress in the field of ocular drug delivery with a focus on the application of physical methods, including electrical fields, sonophoresis, and microneedles, which can enhance penetration efficiency by transiently disrupting the ocular barriers in a minimally or non-invasive manner.
Collapse
|
4
|
Godfrey C, Desviat LR, Smedsrød B, Piétri-Rouxel F, Denti MA, Disterer P, Lorain S, Nogales-Gadea G, Sardone V, Anwar R, El Andaloussi S, Lehto T, Khoo B, Brolin C, van Roon-Mom WM, Goyenvalle A, Aartsma-Rus A, Arechavala-Gomeza V. Delivery is key: lessons learnt from developing splice-switching antisense therapies. EMBO Mol Med 2017; 9:545-557. [PMID: 28289078 PMCID: PMC5412803 DOI: 10.15252/emmm.201607199] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of splice‐switching antisense therapy is highly promising, with a wealth of pre‐clinical data and numerous clinical trials ongoing. Nevertheless, its potential to treat a variety of disorders has yet to be realized. The main obstacle impeding the clinical translation of this approach is the relatively poor delivery of antisense oligonucleotides to target tissues after systemic delivery. We are a group of researchers closely involved in the development of these therapies and would like to communicate our discussions concerning the validity of standard methodologies currently used in their pre‐clinical development, the gaps in current knowledge and the pertinent challenges facing the field. We therefore make recommendations in order to focus future research efforts and facilitate a wider application of therapeutic antisense oligonucleotides.
Collapse
Affiliation(s)
- Caroline Godfrey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Bård Smedsrød
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | | | - Michela A Denti
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Petra Disterer
- Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Stéphanie Lorain
- UPMC, INSERM, UMRS 974, CNRS FRE 3617, Institut de Myologie, Paris, France
| | - Gisela Nogales-Gadea
- Grup d'Investigació en Malalties Neuromusculars i Neuropediatriques, Institut d' Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona Barcelona, Spain
| | - Valentina Sardone
- Dubowitz Neuromuscular Centre and Developmental Neuroscience Programme, Institute of Child Health, University College London, London, UK
| | - Rayan Anwar
- Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel.,Drug Discovery and Development Laboratory, Institute of Applied Research, Galilee Society, Shefa-Amr, Israel
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Taavi Lehto
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Bernard Khoo
- Centre for Neuroendocrinology, Division of Medicine, University College London, London, UK
| | - Camilla Brolin
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Aurélie Goyenvalle
- INSERM U1179, UFR des sciences de la santé, Université Versailles Saint Quentin, Montigny-le-Bretonneux, France
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
5
|
Abstract
INTRODUCTION The sclera is considered the 'static barrier,' a main barrier for transscleral drug delivery. The characterization of passive and iontophoretic transport across the sclera in vitro is the first step toward our ability to predict transscleral drug delivery. Although previous studies have investigated this topic, the quantitative structure permeation relationships (QSPR) for passive and iontophoretic transscleral transport are not available. AREAS COVERED This review evaluated previous results of transscleral passive and iontophoretic transport in vitro and examined QSPR for transscleral permeation of small permeants and macromolecules. Passive permeation data in the literature were compared with respective to the animal species employed in the studies. Data variability was investigated. Electrotransport theory and the mechanisms of iontophoresis were reviewed and used to analyze the iontophoresis data. EXPERT OPINION QSPR was examined for passive transscleral permeation, showing correlations between logarithm of permeability coefficient and logarithm of molecular weight. Potential causes of data variability were proposed. QSPR were established for electroosmosis using the molecular weight of neutral permeants and for iontophoresis enhancement using the molecular weight and charge of ionic permeants. However, QSPR for charged macromolecules were empirical; iontophoretic flux enhancement was significantly smaller than Nernst-Planck model prediction due to complicating factors.
Collapse
Affiliation(s)
- S Kevin Li
- a Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , USA
| | - Jinsong Hao
- b Department of Pharmaceutical Science and Research, School of Pharmacy , Marshall University , Huntington , WV , USA
| |
Collapse
|
6
|
Parameters affecting the transscleral delivery of two positively charged proteins of comparable size. Int J Pharm 2017; 521:214-221. [DOI: 10.1016/j.ijpharm.2017.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/08/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022]
|
7
|
Gratieri T, Santer V, Kalia YN. Basic principles and current status of transcorneal and transscleral iontophoresis. Expert Opin Drug Deliv 2016; 14:1091-1102. [DOI: 10.1080/17425247.2017.1266334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Taís Gratieri
- Laboratory of Food Drugs and Cosmetics (LTMAC), University of Brasilia, Brasília, DF, Brazil
| | - Verena Santer
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, Geneva, Switzerland
| |
Collapse
|
8
|
Sekijima H, Ehara J, Hanabata Y, Suzuki T, Kimura S, Lee VHL, Morimoto Y, Ueda H. Characterization of Ocular Iontophoretic Drug Transport of Ionic and Non-ionic Compounds in Isolated Rabbit Cornea and Conjunctiva. Biol Pharm Bull 2016; 39:959-68. [DOI: 10.1248/bpb.b15-00932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hidehisa Sekijima
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Josai University
| | - Junya Ehara
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Josai University
| | - Yusuke Hanabata
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Josai University
| | - Takumi Suzuki
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Josai University
| | - Soichiro Kimura
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Josai University
| | | | | | - Hideo Ueda
- Department of Hospital Pharmacy, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
9
|
Pescina S, Govoni P, Antopolsky M, Murtomäki L, Padula C, Santi P, Nicoli S. Permeation of proteins, oligonucleotide and dextrans across ocular tissues: experimental studies and a literature update. J Pharm Sci 2015; 104:2190-202. [PMID: 25973792 DOI: 10.1002/jps.24465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022]
Abstract
Proteins and oligonucleotides represent powerful tools for the treatment of several ocular diseases, affecting both anterior and posterior eye segments. Despite the potential of these compounds, their administration remains a challenge. The last years have seen a growing interest for the noninvasive administration of macromolecular drugs, but still there is only little information of their permeability across the different ocular barriers. The aim of this work was to evaluate the permeation of macromolecules of different size, shape and charge across porcine ocular tissues such as the isolated sclera, the choroid Bruch's membrane and the cornea, both intact and de-epitelialized. Permeants used were two proteins (albumin and cytochrome C), an oligonucleotide, two dextrans (4 and 40 kDa) and a monoclonal antibody (bevacizumab). Obtained data and its comparison with the literature highlight the difficulties in predicting the behavior of macromolecules based on their physicochemical properties, because the interplay between the charge, molecular radius and conformation prevent their analysis separately. However, the data can be of great help for a rough evaluation of the feasibility of a noninvasive administration and for building computational models to improve understanding of the interplay among static, dynamic and metabolic barriers in the delivery of macromolecules to the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Paolo Govoni
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, 43126, Italy
| | - Maxim Antopolsky
- Centre for Drug Research, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lasse Murtomäki
- Department of Chemistry, Aalto University, Aalto, FI-00076, Finland
| | - Cristina Padula
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Patrizia Santi
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Sara Nicoli
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| |
Collapse
|
10
|
Tratta E, Pescina S, Padula C, Santi P, Nicoli S. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery. Eur J Pharm Biopharm 2014; 88:116-22. [DOI: 10.1016/j.ejpb.2014.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
|
11
|
Virtual pharmacokinetic model of human eye. Math Biosci 2014; 253:11-8. [PMID: 24721554 DOI: 10.1016/j.mbs.2014.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/04/2013] [Accepted: 03/24/2014] [Indexed: 11/24/2022]
Abstract
A virtual pharmacokinetic 3D model of the human eye is built using Comsol Multiphysics® software, which is based on the Finite Element Method (FEM). The model considers drug release from a polymer patch placed on sclera. The model concentrates on the posterior part of the eye, retina being the target tissue, and comprises the choroidal blood flow, partitioning of the drug between different tissues and active transport at the retina pigment epithelium (RPE)-choroid boundary. Although most straightforward, in order to check the mass balance, no protein binding or metabolism is yet included. It appeared that the most important issue in obtaining reliable simulation results is the finite element mesh, while time stepping has hardly any significance. Simulations were extended to 100,000 s. The concentration of a drug is shown as a function of time at various points of retina, as well as its average value, varying several parameters in the model. This work demonstrates how anybody with basic knowledge of calculus is able to build physically meaningful models of quite complex biological systems.
Collapse
|