1
|
Potrč T, Kralj S, Nemec S, Kocbek P, Erdani Kreft M. The shape anisotropy of magnetic nanoparticles: an approach to cell-type selective and enhanced internalization. NANOSCALE 2023; 15:8611-8618. [PMID: 37114487 DOI: 10.1039/d2nr06965b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The effects of the shape anisotropy of nanoparticles on cellular uptake is still poorly understood due to challenges in the synthesis of anisotropic magnetic nanoparticles of the same composition. Here, we design and synthesize spherical magnetic nanoparticles and their anisotropic assemblies, namely magnetic nanochains (length ∼800 nm). Then, nanoparticle shape anisotropy is investigated on urothelial cells in vitro. Although both shapes of nanomaterials reveal biocompatibility, we havefound significant differences in the extent of their intracellular accumulation. Contrary to spherical particles, anisotropic nanochains preferentially accumulate in cancer cells as confirmed by inductively coupled plasma (ICP) analysis, indicating that control of the nanoparticle shape geometry governs cell-type-selective intracellular uptake and accumulation.
Collapse
Affiliation(s)
- Tanja Potrč
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Slavko Kralj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Nanos SCI, Nanos Scientificae d.o.o., Teslova 30, 1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Molecular simulation of poly(ethylene-ran-propylene) nanoparticles with different comonomer composition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Kralj S, Marchesan S. Bioinspired Magnetic Nanochains for Medicine. Pharmaceutics 2021; 13:1262. [PMID: 34452223 PMCID: PMC8398308 DOI: 10.3390/pharmaceutics13081262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field.
Collapse
Affiliation(s)
- Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
4
|
Dragar Č, Kralj S, Kocbek P. Bioevaluation methods for iron-oxide-based magnetic nanoparticles. Int J Pharm 2021; 597:120348. [DOI: 10.1016/j.ijpharm.2021.120348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
|
5
|
Demirci H, Slimani N, Pawar M, Kumon RE, Vaishnava P, Besirli CG. Magnetic Hyperthermia in Y79 Retinoblastoma and ARPE-19 Retinal Epithelial Cells: Tumor Selective Apoptotic Activity of Iron Oxide Nanoparticle. Transl Vis Sci Technol 2019; 8:18. [PMID: 31602343 PMCID: PMC6779177 DOI: 10.1167/tvst.8.5.18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose To evaluate selective apoptosis of Y79 retinoblastoma versus ARPE-19 retinal pigment epithelial cells by using different doses of dextran-coated iron oxide nanoparticles (DCIONs) in a magnetic hyperthermia paradigm. Methods Y79 and ARPE-19 cells were exposed to different concentrations of DCIONs, namely, 0.25, 0.5, 0.75, and 1 mg/ml. After 2 hours of incubation, cells were exposed to a magnetic field with a frequency of 250 kHz and an amplitude of 4 kA/m for 30 minutes to raise the cellular temperature between 42 and 46°C. Y79 and ARPE-19 cells incubated with DCION without magnetic field exposure were used as controls. Cell viability and apoptosis were assessed at 4, 24, and 72 hours after hyperthermia treatment. Results At 4 hours following magnetic hyperthermia, cell death for Y79 cells was 1%, 8%, 17%, and 17% for 0.25, 0.5, 0.75 and 1 mg/ml of DCION, respectively. Cell death increased to 47%, 59%, 70%, and 75% at 24 hours and 16%, 45%, 50%, and 56% at 72 hours for 0.25, 0.5, 0.75, and 1 mg/ml of DCIONs, respectively. Magnetic hyperthermia did not have any significant toxic effects on ARPE-19 cells at all DCION concentrations, and minimal baseline cytotoxicity of DCIONs on Y79 and ARPE-19 cells was observed without magnetic field activation. Gene expression profiling showed that genes involved in FAS and tumor necrosis factor alpha signaling pathways were activated in Y79 cells following hyperthermia. Caspase 3/7 activity in Y79 cells increased following treatment, consistent with the activation of caspase-mediated apoptosis and loss of cell viability by magnetic hyperthermia. Conclusion Magnetic hyperthermia using DCIONs selectively kills Y79 cells at 0.5 mg/ml or higher concentrations via the activation of apoptotic pathways. Translational Relevance Magnetic hyperthermia using DCIONs might play a role in targeted management of retinoblastoma.
Collapse
Affiliation(s)
- Hakan Demirci
- Department of Ophthalmology and Visual Sciences. W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Naziha Slimani
- Department of Ophthalmology and Visual Sciences. W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences. W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Ronald E Kumon
- Department of Physics, Kettering University, Flint, MI, USA
| | - Prem Vaishnava
- Department of Physics, Kettering University, Flint, MI, USA
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences. W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Molecular simulation of nanoparticles composed of mono- and bi-dispersed poly(ethylene oxide). J Mol Model 2019; 25:271. [PMID: 31448391 DOI: 10.1007/s00894-019-4174-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
7
|
Du M, Ouyang Y, Meng F, Ma Q, Liu H, Zhuang Y, Pang M, Cai T, Cai Y. Nanotargeted agents: an emerging therapeutic strategy for breast cancer. Nanomedicine (Lond) 2019; 14:1771-1786. [PMID: 31298065 DOI: 10.2217/nnm-2018-0481] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most common female cancer worldwide and represents 12% of all cancer cases. Improvements in survival rates are largely attributed to improved screening and diagnosis. Conventional chemotherapy remains an important treatment option but it is beset with poor cell selectivity, serious side effects and resistance. Nanoparticle drug delivery systems bring promising opportunities to breast cancer treatment. They may improve chemotherapy by targeting drugs to tumors, generating high drug concentrations at tumors providing slow release of the drug, increased drug stability and concomitant reductions in side effects. The nanotechnology-based drug delivery approaches and the current research and application status of nano-targeted agents for breast cancer are discussed in this review to provide a basis for further study on targeted drug delivery systems.
Collapse
Affiliation(s)
- Manling Du
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yong Ouyang
- Guangzhou Hospital of Integrated Traditional Chinese & Western Medicine, Guangzhou 510800, PR China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of TCM, Zhongshan, Guangdong 528400, PR China
| | - Qianqian Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hui Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yong Zhuang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Mujuan Pang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.,Cancer Research Institute of Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
8
|
Citartan M, Kaur H, Presela R, Tang TH. Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 2019; 567:118483. [PMID: 31260780 DOI: 10.1016/j.ijpharm.2019.118483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Aptamers, nucleic acid ligands that are specific against their corresponding targets are increasingly employed in a variety of applications including diagnostics and therapeutics. The specificity of the aptamers against their targets is also used as the basis for the formulation of the aptamer-based drug delivery system. In this review, we aim to provide an overview on the chaperoning roles of aptamers in acting as the cargo or load carriers, delivering contents to the targeted sites via cell surface receptors. Internalization of the aptamer-biomolecule conjugates via receptor-mediated endocytosis and the strategies to augment the rate of endocytosis are underscored. The cargos chaperoned by aptamers, ranging from siRNAs to DNA origami are illuminated. Possible impediments to the aptamer-based drug deliveries such as susceptibility to nuclease resistance, potentiality for immunogenicity activation, tumor heterogeneity are speculated and the corresponding amendment strategies to address these shortcomings are discussed. We prophesy that the future of the aptamer-based drug delivery will take a trajectory towards DNA nanorobot-based assay.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Harleen Kaur
- Aurobindo Biologics, Biologics R&D Center, Unit-17, Industrial Area, Survey No: 77 & 78, Indrakaran Village, Kandi(Mandal), Sangareddy (District), Hyderabad 502329, India
| | - Ravinderan Presela
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
9
|
Dragar Č, Potrč T, Nemec S, Roškar R, Pajk S, Kocbek P, Kralj S. One-Pot Method for Preparation of Magnetic Multi-Core Nanocarriers for Drug Delivery. MATERIALS 2019; 12:ma12030540. [PMID: 30759725 PMCID: PMC6384742 DOI: 10.3390/ma12030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.
Collapse
Affiliation(s)
- Črt Dragar
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Tanja Potrč
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Biophysics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Formulation and in vitro evaluation of magnetoliposomes as a potential nanotool in colorectal cancer therapy. Colloids Surf B Biointerfaces 2018; 171:553-565. [PMID: 30096477 DOI: 10.1016/j.colsurfb.2018.07.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
Magnetoliposomes (MLPs) offer many new possibilities in cancer therapy and diagnosis, including the transport of antitumor drugs, hyperthermia treatment, detection using imaging techniques, and even cell migration. However, high biocompatibility and functionality after cell internalization are essential to their successful application. We synthesized maghemite nanoparticles (γ-Fe2O3) by oxidizing magnetite cores (Fe3O4) and coating them with phosphatidylcholine (PC) liposomes, obtained using the thin film hydration method, to generate MLPs. The MLPs were tested in vitro, using human tumor and non-tumor colon cell lines, for cytotoxicity, cell uptake and cellular distribution, and magnetically-induced cell mobility. In addition, blood cells biocompatibility studies were performed. The mean size of the MLPs, with a core of γ-Fe2O3 completely surrounded by PC liposomes, was 90 ± 20 nm, showing a soft magnetic character and a great biocompatibility in all the cell lines assayed including blood cells. Prussian blue staining showed a high MLP cell uptake with maximum internalization at 24 h. TEM analysis showed the MLPs surrounded by the cell membrane and in the cell periphery, suggesting internalization by endocytosis and/or macropinocytosis. Interestingly, the mitochondria presented MLP accumulations, particularly in tumor cells. Finally, MLPs within colon cancer cells were able to induce cell migration when a magnetic field was applied in vitro, indicating the functionality of our nanoformulation. A promising biomedical application of these MLPs is anticipated based on their physical, chemical and biological properties.
Collapse
|
11
|
Nassireslami E, Ajdarzade M. Gold Coated Superparamagnetic Iron Oxide Nanoparticles as Effective Nanoparticles to Eradicate Breast Cancer Cells via Photothermal Therapy. Adv Pharm Bull 2018; 8:201-209. [PMID: 30023321 PMCID: PMC6046429 DOI: 10.15171/apb.2018.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose: Unique physiochemical properties of Fe2O3 nanoparticles make them great agents to serve as therapeutic and diagnostic nanoparticles (NPs). In this study, we developed gold coated Fe2O3 nanoparticles for photothermal therapy of breast cancer cells. Methods: Fe2O3 nanoparticles was prepared via microemulsion method and their surface was modified via gold. Differential light scattering (DLS) and transmission electron microscopy (TEM) methods were applied to evaluate physicochemical properties of NPs. Gold coated NP was further modified with MUC-1 aptamer as a targeting agent to increase drug delivery into the desired tissue. To evaluate cytotoxicity of prepared cells, MTT assay was employed. Targeting ability of aptamer modified NPs was assessed through confocal microscopy and flow cytometry method. Subsequently, MCF-7 and CHO cells were treated with aptamer modified NPs and were then irradiated via near infrared light (NIR) to produce heat. Results: The morphology of NPs was spherical and monodisperse with the size of 16 nm, which was confirmed via DLS and TEM. Confocal microscopy and flow cytometry results indicated that aptamer modified NPs had higher uptake compared to bare NPs. Finally, NIR exposure results revealed that higher uptake of NPs and application of NIR led to significant death of MCF-7 cells compared to CHO cells. Conclusion: To sum up, aptamer modified Fe2O3 nanoparticles showed higher uptake by cancerous cells and led to eradication of cancerous cells after exposure to NIR light.
Collapse
Affiliation(s)
- Ehsan Nassireslami
- Department of Pharmacology &Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Morteza Ajdarzade
- Department of Pharmacology &Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Aljabali AAA, Hussein E, Aljumaili O, Zoubi MA, Altrad B, Albatayneh K, Abd Al-razaq MA. Rapid Magnetic Nanobiosensor for the detection ofSerratia marcescen. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/305/1/012005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field. Sci Rep 2017; 7:46287. [PMID: 28397790 PMCID: PMC5387737 DOI: 10.1038/srep46287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Recently, magnetic nanoparticles (MNPs), which can be manipulated in the magnetic field, have received much attention in tumor therapy. Extremely low frequency magnetic field (ELMF) system can initiate MNPs vibrating and the movement of MNPs inside of cells can be controlled by adjusting the frequency and intensity of ELMF towards irreversible cell damages. In this study, we investigated the detrimental effects on tumor cells with MNPs under various ELMF exposure conditions. An in-house built ELMF system was developed and utilized for evaluating the treatment efficiency of MNPs on tumor cells with specific intensities (2–20 Hz) and frequencies (0.1–20 mT). Significant morphological changes were found in tumor cells treated with MNPs in combing with ELMF, which were consistent with noticeable decrease in cell viability. With the increase of the intensity and frequency of the magnetic field, the structural integrity of tumor tissue can be further destroyed. Destructive effects of MNPs and ELMF on tumor tissues were further determined by the pathophysiological changes observed in vivo in animal study. Taken together, the combination of MNPs and ELMF had a great potential as an innovative treatment approach for tumor intervention.
Collapse
|
14
|
Application of magneto‐responsive Oenococcus oeni for the malolactic fermentation in wine. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Monte Carlo simulation of the stability and structure of polyethylene oxide nanodroplet with different solvent qualities. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3808-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Maity AR, Stepensky D. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly “Targeted” Drug Delivery Systems. Mol Pharm 2015; 13:1-7. [DOI: 10.1021/acs.molpharmaceut.5b00697] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amit Ranjan Maity
- Department of Clinical Biochemistry
and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - David Stepensky
- Department of Clinical Biochemistry
and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
17
|
Meyer RA, Green JJ. Biodegradable polymer iron oxide nanocomposites: the future of biocompatible magnetism. Nanomedicine (Lond) 2015; 10:3421-5. [PMID: 26608843 DOI: 10.2217/nnm.15.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Randall A Meyer
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Department of Materials Science & Engineering, Department of Ophthalmology, Department of Oncology & Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
18
|
Niemirowicz K, Prokop I, Wilczewska AZ, Wnorowska U, Piktel E, Wątek M, Savage PB, Bucki R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int J Nanomedicine 2015; 10:3843-53. [PMID: 26082634 PMCID: PMC4461127 DOI: 10.2147/ijn.s76104] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The pleiotropic activity of human cathelicidin LL-37 peptide includes an ability to suppress development of colon cancer cells. We hypothesized that the anticancer activity of LL-37 would improve when attached to the surface of magnetic nanoparticles (MNPs). Using colon cancer culture (DLD-1 cells and HT-29 cells), we evaluated the effects of MNPs, LL-37 peptide, its synthetic analog ceragenin CSA-13, and two novel nanosystems, ie, MNP@LL-37 and MNP@CSA-13, on cancer cell viability and apoptosis. Treatment of cancer cells with the LL-37 peptide linked to MNPs (MNP@LL-37) caused a greater decrease in cell viability and a higher rate of apoptosis compared with treatment using free LL-37 peptide. Additionally, we observed a strong ability of ceragenin CSA-13 and MNP@CSA-13 to induce apoptosis of DLD-1 cells. We found that both nanosystems were successfully internalized by HT-29 cells, and cathelicidin LL-37 and ceragenin CSA-13 might play a key role as novel homing molecules. These results indicate that the previously described anticancer activity of LL-37 peptide against colon cancer cells might be significantly improved using a theranostic approach.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Poland
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | | | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Poland
| | - Marzena Wątek
- Department of Hematology, Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Poland ; Department of Physiology, Pathophysiology and Microbiology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
19
|
Controlled heteroaggregation of two types of nanoparticles in an aqueous suspension. J Colloid Interface Sci 2015; 438:235-243. [DOI: 10.1016/j.jcis.2014.09.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 01/13/2023]
|
20
|
Schleich N, Danhier F, Préat V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J Control Release 2015; 198:35-54. [DOI: 10.1016/j.jconrel.2014.11.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022]
|
21
|
Zhao L, Li H, Shi Y, Wang G, Liu L, Su C, Su R. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78. Int J Nanomedicine 2014; 10:245-56. [PMID: 25565817 PMCID: PMC4283987 DOI: 10.2147/ijn.s74868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nanoparticles (NPs) which target specific agents could effectively recognize the target cells and increase the stability of chemical agents by encapsulation. As such, NPs have been widely used in cancer treatment research. Recently, over 90% of treatment failure cases in patients with metastatic cancer were attributed to resistance to chemotherapy. Surface-exposed glucose-regulated protein of 78 kDa (GRP78) is expressed highly on many tumor cell surfaces in many human cancers and is related to the regulation of invasion and metastasis. Herein, we report that NPs conjugated with antibody against GRP78 (mAb GRP78-NPs) inhibit the adhesion, invasion, and metastasis of hepatocellular carcinoma (HCC) and promote drug delivery of 5-fluorouracil into GRP78 high-expressed human hepatocellular carcinoma cells. Our new findings suggest that mAb GRP78-NPs could enhance drug accumulation by effectively transporting NPs into cell surface GRP78-overexpressed human hepatocellular carcinoma cells and then inhibit cell proliferation and viability and induce cell apoptosis by regulating caspase-3. In brief, mAb GRP78-NPs effectively inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery.
Collapse
Affiliation(s)
- Liang Zhao
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Hongdan Li
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Yijie Shi
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Guan Wang
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Liwei Liu
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Rongjian Su
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
22
|
Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 2014; 194:82-91. [DOI: 10.1016/j.jconrel.2014.07.059] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/22/2023]
|
23
|
Crucho CIC. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2014; 10:24-38. [PMID: 25319803 DOI: 10.1002/cmdc.201402290] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/17/2014] [Indexed: 12/28/2022]
Abstract
Nature continues to be the ultimate in nanotechnology, where polymeric nanometer-scale architectures play a central role in biological systems. Inspired by the way nature forms functional supramolecular assemblies, researchers are trying to make nanostructures and to incorporate these into macrostructures as nature does. Recent advances and progress in nanoscience have demonstrated the great potential that nanomaterials have for applications in healthcare. In the realm of drug delivery, nanomaterials have been used in vivo to protect the drug entity in the systemic circulation, ensuring reproducible absorption of bioactive molecules that do not naturally penetrate biological barriers, restricting drug access to specific target sites. Several building blocks have been used in the formulation of nanoparticles. Thus, stability, drug release, and targeting can be tailored by surface modification. Herein the state of the art of stimuli-responsive polymeric nanoparticles are reviewed. Such systems are able to control drug release by reacting to naturally occurring or external applied stimuli. Special attention is paid to the design and nanoparticle formulation of these so-called smart drug-delivery systems. Future strategies for further developments of a promising controlled drug delivery responsive system are also outlined.
Collapse
Affiliation(s)
- Carina I C Crucho
- Department of Chemistry REQUIMTE/CQFB, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal).
| |
Collapse
|
24
|
Šmejkalová D, Nešporová K, Huerta-Angeles G, Syrovátka J, Jirák D, Gálisová A, Velebný V. Selective In Vitro Anticancer Effect of Superparamagnetic Iron Oxide Nanoparticles Loaded in Hyaluronan Polymeric Micelles. Biomacromolecules 2014; 15:4012-20. [DOI: 10.1021/bm501065q] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Daniela Šmejkalová
- Contipro Pharma, Dolní
Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Kristina Nešporová
- Contipro Pharma, Dolní
Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Jakub Syrovátka
- Contipro Pharma, Dolní
Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Daniel Jirák
- MR
Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine IKEM, Vídeňská 1958/9, 140 21 Prague, Czech Republic
- Institute
of Biophysics and Informatics, First Medicine Faculty, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Andrea Gálisová
- MR
Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine IKEM, Vídeňská 1958/9, 140 21 Prague, Czech Republic
| | - Vladimír Velebný
- Contipro Pharma, Dolní
Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
25
|
Koklic T. Perifosine induced release of contents of trans cell-barrier transport efficient liposomes. Chem Phys Lipids 2014; 183:50-9. [DOI: 10.1016/j.chemphyslip.2014.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
|
26
|
Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB. Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 2014. [DOI: 10.1039/c4ra06406b] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Verderio P, Avvakumova S, Alessio G, Bellini M, Colombo M, Galbiati E, Mazzucchelli S, Avila JP, Santini B, Prosperi D. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv Healthc Mater 2014; 3:957-76. [PMID: 24443410 DOI: 10.1002/adhm.201300602] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Collapse
Affiliation(s)
- Paolo Verderio
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Svetlana Avvakumova
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Giulia Alessio
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Jesus Peñaranda Avila
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS; Via Capecelatro 66 20148 Milan Italy
| |
Collapse
|
28
|
Shapiro EM. Biodegradable, polymer encapsulated, metal oxide particles for MRI-based cell tracking. Magn Reson Med 2014; 73:376-89. [PMID: 24753150 DOI: 10.1002/mrm.25263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 12/26/2022]
Abstract
Metallic particles have shaped the use of magnetic resonance imaging (MRI) for molecular and cellular imaging. Although these particles have generally been developed for extracellular residence, either as blood pool contrast agents or targeted contrast agents, the coopted use of these particles for intracellular labeling has grown over the last 20 years. Coincident with this growth has been the development of metal oxide particles specifically intended for intracellular residence, and innovations in the nature of the metallic core. One promising nanoparticle construct for MRI-based cell tracking is polymer encapsulated metal oxide nanoparticles. Rather than a polymer coated metal oxide nanocrystal of the core: shell type, polymer encapsulated metal oxide nanoparticles cluster many nanocrystals within a polymer matrix. This nanoparticle composite more efficiently packages inorganic nanocrystals, affording the ability to label cells with more inorganic material. Further, for magnetic nanocrystals, the clustering of multiple magnetic nanocrystals within a single nanoparticle enhances r2 and r2* relaxivity. Methods for fabricating polymer encapsulated metal oxide nanoparticles are facile, yielding both varied compositions and synthetic approaches. This review presents a brief history into the use of metal oxide particles for MRI-based cell tracking and details the development and use of biodegradable, polymer encapsulated, metal oxide nanoparticles and microparticles for MRI-based cell tracking.
Collapse
Affiliation(s)
- Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
29
|
|
30
|
Kralj S, Makovec D. The chemically directed assembly of nanoparticle clusters from superparamagnetic iron-oxide nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra00776j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|