1
|
Nakmode DD, Singh B, Abdella S, Song Y, Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv Transl Res 2025; 15:1156-1180. [PMID: 39661312 PMCID: PMC11870889 DOI: 10.1007/s13346-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite being the most widely prescribed formulation, oral formulations possess several limitations such as low adherence, low bioavailability, high toxicity (in the case of anticancer drugs), and multiple-time administration requirements. All these limitations can be overcome by long-acting injectables. Improved adherence, patient compliance, and reduced relapse have been observed with long-acting formulation which has increased the demand for long-acting injectables. Drugs or peptide molecules with oral bioavailability issues can be easily delivered by long-acting systems. This review comprehensively addresses the various technologies used to develop long-acting injections with a particular focus on hydrophilic drugs and large molecules as well as the factors affecting the choice of formulation strategy. This is the first review that discusses the possible technologies that can be used for developing long-acting formulations for hydrophilic molecules along with factors which will affect the choice of the technology. Furthermore, the mechanism of drug release as well as summaries of marketed formulations will be presented. This review also discusses the challenges associated with the manufacturing and scale-up of the long-acting injectables.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
2
|
Albuquerque J, Neves AR, Van Dorpe I, Fonseca AJM, Cabrita ARJ, Reis S. Production of rumen- and gastrointestinal-resistant nanoparticles to deliver lysine to dairy cows. Sci Rep 2023; 13:16667. [PMID: 37794129 PMCID: PMC10550922 DOI: 10.1038/s41598-023-43865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Supplementing diets with rumen-protected lysine is a common strategy to meet the nutritional needs of high-producing dairy cows. This work addressed two separate but crucial issues: the lysine protection degree across the entire digestive tract as well as the production scalability of the proposed delivery systems. This was achieved by evaluating, in vitro or ex vivo, previously developed rumen-resistant lipid nanoparticles regarding their stability in the digestive tract and in the bloodstream of the dairy cow as well as how their production could be scaled-up. Results showed that the developed nanoparticles were able to resist digestion along the digestive tract but were degraded in the blood over 24 h. Thus, releasing their content to be used by the animal. In vitro viability assays were also performed, with the nanoparticles being found not to be inherently toxic when using nanoparticle concentrations up to 1 mg/mL. Results showed that neither the purity of the used lipids nor the production method significantly altered the nanoparticles' properties or their ruminal resistance. Furthermore, the shelf-life of these nanoparticles was assessed, and they were found to retain their properties and remain usable after at least 1 month of storage. Moreover, a pilot-scale production allowed the production of nanoparticles with similar properties to the previous ones made using standard methods. To summarize, the proposed rumen-resistant nanoparticles presented potential as orally ingested lysine delivery systems for dairy cattle supplementation, being capable of a large-scale production using cheaper components while maintaining their properties and without any efficiency loss. It should however be noted that these results were obtained mainly in vitro and further in vivo bioavailability and production experiments are needed before this technology can be confirmed as a viable way of delivering lysine to dairy cows.
Collapse
Affiliation(s)
- João Albuquerque
- LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Ana R Neves
- LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
- CQM+-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Ingrid Van Dorpe
- PREMIX-Especialidades Agrícolas e Pecuárias. Lda, Parque Indústrial II-Neiva, 4935-232, Viana do Castelo, Portugal
| | - António J M Fonseca
- LAQV, REQUIMTE, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Ana R J Cabrita
- LAQV, REQUIMTE, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, FFUP, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| |
Collapse
|
3
|
Ghanbari E, Chen Z, Padmanabhan P, Picken SJ, van Esch JH. Supramolecular Arrangement and Rheological Properties of Bisamide Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10913-10924. [PMID: 37492983 PMCID: PMC10413945 DOI: 10.1021/acs.langmuir.3c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Indexed: 07/27/2023]
Abstract
We report a systematic study of the gelation behavior of nBA gelators in xylene, with odd and even n-methylene spacers between the amide groups (n = 5-10) and 17 carbons at each end. The melting temperatures (Tm0) of nBA gels are obtained from fitting our DSCN(T) model to the experimental DSC data. The found Tm0 of nBA gels is about 35 °C lower than Tm0 of the pure nBA gelators. This is reasonably well explained by a simple model combining theories of Flory-Huggins and Gibbs free energy of melting (FHM model). We attribute this depression to an increase in entropy upon melting of the gel due to mixing with the solvent. The odd-even alternation in Tm0 of nBA gels, which was also found for the nBA gelators, indicates that the solid structures inside the gels are somewhat similar. This was studied using XRD: similar 00l reflections were found in the XRD patterns of all nBA gels and their nBA gelators. For even nBA gels, the same reflections in the 19-25° (2θ) region confirm that the sheetlike supramolecular structure of the gels is analogous to the lamellar structure of the solid gelators. For odd nBA gels, a slight difference in the reflections around 20-25° (2θ) implies a somewhat different side-by-side packing of odd nBA gels compared to the solid state. This variation is found for all the odd gels, and indeed, they show distinctly different morphologies compared to the even nBA gels. The possible effect of this on the rheological properties is discussed using some inspiration from the Halpin-Tsai model for composites where nBA gels are considered to be analogous to composite materials. The change of the storage modulus (G') with the shape factor of woven fibers and sheets in nBA gels (20 wt %) indicates that a rheological odd-even effect might indeed be present.
Collapse
Affiliation(s)
- Elmira Ghanbari
- Advanced Soft Matter (ASM)
Group, Chemical Engineering Department, Faculty of Applied Science
(TNW), Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Zian Chen
- Advanced Soft Matter (ASM)
Group, Chemical Engineering Department, Faculty of Applied Science
(TNW), Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Pooja Padmanabhan
- Advanced Soft Matter (ASM)
Group, Chemical Engineering Department, Faculty of Applied Science
(TNW), Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Stephen J. Picken
- Advanced Soft Matter (ASM)
Group, Chemical Engineering Department, Faculty of Applied Science
(TNW), Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan H. van Esch
- Advanced Soft Matter (ASM)
Group, Chemical Engineering Department, Faculty of Applied Science
(TNW), Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022; 8:563. [PMID: 36135275 PMCID: PMC9498590 DOI: 10.3390/gels8090563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|
5
|
Wilkinson J, Ajulo D, Tamburrini V, Gall GL, Kimpe K, Holm R, Belton P, Qi S. Lipid based intramuscular long-acting injectables: current state of the art. Eur J Pharm Sci 2022; 178:106253. [DOI: 10.1016/j.ejps.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
|
6
|
Qureshi D, Choudhary B, Mohanty B, Sarkar P, Anis A, Cerqueira MA, Banerjee I, Maji S, Pal K. Graphene Oxide Increases Corneal Permeation of Ciprofloxacin Hydrochloride from Oleogels: A Study with Cocoa Butter-Based Oleogels. Gels 2020; 6:E43. [PMID: 33238509 PMCID: PMC7709633 DOI: 10.3390/gels6040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
In this work, oleogels of cocoa butter (CB), rice bran oil (RBO), and graphene oxide (GO) were prepared. The prepared oleogels were subjected to various characterization techniques such as bright-field microscopy, X-ray diffraction (XRD), crystallization kinetics, differential scanning calorimetry (DSC), and mechanical studies. The influence of increasing GO content on the in vitro drug release and ex vivo corneal permeation of the model drug (ciprofloxacin HCl-CPH) from the oleogels was also investigated. Bright-field micrographs showed that increment in GO content reduced the size of the globular particles of CB. XRD analysis revealed that CB was crystallized in its β' and β polymorphic forms in the oleogels, which was in agreement with thermal studies. The mechanical characterization demonstrated that the presence of GO improved the elastic nature and stress-bearing properties of the oleogels. Moreover, GO altered the crystallization kinetics of CB in the oleogels in a composition-dependent manner. The in vitro release of CPH from the oleogels occurred through either Fickian diffusion or fat network relaxation or a combination thereof. Furthermore, the inclusion of GO enhanced the ex vivo permeation of CPH molecules across the caprine cornea. Hence, we concluded that the prepared oleogels could be explored as potential delivery systems for ophthalmic applications.
Collapse
Affiliation(s)
- Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Barbiee Choudhary
- Amity Institute of Biotechnology, Amity University, Noida 201301, India;
| | | | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Indranil Banerjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur 600036, India;
| | - Samarendra Maji
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| |
Collapse
|
7
|
Khan UA, Parveen U, Hasan N, Ahmed MZ, Saad S, Ahmad FJ, Jain GK. Parenteral Sustained Release Lipid Phase-Transition System of Ziprasidone: Fabrication and Evaluation for Schizophrenia Therapy. Drug Des Devel Ther 2020; 14:2237-2247. [PMID: 32606594 PMCID: PMC7294276 DOI: 10.2147/dddt.s247196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/14/2020] [Indexed: 11/29/2022] Open
Abstract
Introduction Ziprasidone (ZP) is a novel atypical antipsychotic agent effective in the treatment of positive and negative symptoms of schizophrenia with low chances for extrapyramidal side effects (EPs) and cognitive deficits. ZP possesses poor oral bioavailability (~50%), short biological half-life (~2.5 h) and due to extensive first-pass metabolism, a repeated dose is administered which makes the therapy non-adherent, leading to patient non-compliance. Therefore, this is a first report of developing parenteral ZP loaded sustained release phospholipid based phase-transition system (ZP-LPS). Methods The ZP-LPS system was formulated by mixing of biocompatible materials including phospholipid E 80, medium chain triglyceride (MCT) and ethanol. Optimization was done by aqueous titration method using pseudo-ternary phase diagram and dynamic rheological measurements. In vivo depot formation was confirmed by gamma scintigraphy after subcutaneous injection. Biodegradation and biocompatibility studies were performed for its safety evaluation. Finally, the efficacy of the formulation was assessed by Morris water maze (MWM) test and dizocilpine (MK-801) was used to induce schizophrenia in Sprague-Dawley rats. Results Optimized ZP-LPS showed rapid gelation (2 min), highest change in viscosity (~48000 mPa.s) and sustained release of ZP over a period of 1 month. Gamma scintigraphy depicted that the low-viscosity ZP-LPS system undergo rapid in situ gelation. Biodegradation and biocompatibility studies revealed gradual degradation in size of depot over a period of 28 days without any inflammation at the injection site. In MWM test, escape latency, time spent and total distance in target quadrant were significantly improved (p < 0.001) in the ZP-LPS group in comparison to the MK-801 group when evaluated at day 0, day 7 and day 28. However, significant improvement (p < 0.001) was observed only at day 0 in ZP suspension group. Conclusion The overall result indicates that the novel ZP-LPS system is safe, biodegradable, and effective for the management of schizophrenia.
Collapse
Affiliation(s)
- Urooj A Khan
- Nanoformulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Uzma Parveen
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Nanoformulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Zubair Ahmed
- Nanoformulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Suma Saad
- Nanoformulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Farhan J Ahmad
- Nanoformulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Gaurav K Jain
- Nanoformulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
8
|
Hu B, Yan H, Sun Y, Chen X, Sun Y, Li S, Jing Y, Li H. Organogels based on amino acid derivatives and their optimization for drug release using response surface methodology. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:266-275. [PMID: 31851842 DOI: 10.1080/21691401.2019.1699833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Organogels are excellent drug carrier for controlled release. Organogels based on amino acid derivatives has been widely used in the area of drug delivery. In this study, a series of the organogel system based on amino acid derivatives gelators was designed and prepared to investigate the structure-property correlation in organogels. To investigate the factors that influence the property of drug release, we varied the formulation in the organogels: gelator structure, gelator concentration, volume of antigelation solvent, and drug loading. Through the Box-Behnken tests, the optimum organogel formulation in vitro was obtained. The self-healing properties of the organogel have been utilised for injection of a model lipophilic risperidone in situ, and sustained release of the drug has been studied over about one week in vivo. In conclusion, the gelation ability of gelators could be adjusted by the gelator structure. Gel property is related with the whole composition of the formulation. As drug carrier, the drug release property of organogels is affected by multiple factors. Our investigation of the gel release property will play a theoretical guiding role in the application in the in situ drug delivery system.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Haipeng Yan
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China
| | - Yanping Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Xi Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Yujuan Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P, R. China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang, P. R. China
| |
Collapse
|
9
|
Martins AJ, Vicente AA, Pastrana LM, Cerqueira MA. Oleogels for development of health-promoting food products. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Parhi R, Goli VVN. Design and optimization of film-forming gel of etoricoxib using research surface methodology. Drug Deliv Transl Res 2019; 10:498-514. [PMID: 31773422 DOI: 10.1007/s13346-019-00695-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present investigation is focused on the development of transdermal film-forming gel (FFG) loaded with etoricoxib employing research surface methodology (RSM). Box-Behnken surface design method was used to develop experimental run using different concentrations of etoricoxib, hydroxypropyl methylcellulose (HPMC K100M), and eudragit RL100 as independent variables, and Derringer's optimization tool was employed to optimize best possible formulation. The dependent variables considered in this study were viscosity and drug permeation at 24 h (Q24, μg/cm2). Anti-inflammatory study was performed on Wistar albino rats for 8 h. Skin irritation studies and accelerated stability studies were performed for validated FFG formulations. Quadratic model was found to be best fit model (p < 0.0001) for both the responses. The influence of HPMC concentration on the viscosity was found to be highest whereas concentration of etoricoxib was maximum for Q24. The optimum composition of the FFG was observed to be 4% of etoricoxib, 1.1246% of HPMC, and 0.4% of eudragit. Above composition resulted in viscosity of 1549.5 mPa.s and maximum Q24 of 4639.11 μg/cm2 with desirability 0.918. The in vivo anti-inflammatory study demonstrated better sustained release effect (for 8 h) of optimized FFG compared to orally administered drug suspension. An average irritation score of 0.555 was observed on Draize scoring system. The validated FFG formulation was found to be stable for the 3 months in accelerated conditions. It can be concluded from the above investigations that the validated FFG formulation of etoricoxib is well tolerated and could provide sustained drug release for 8 h. Graphical abstract.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- GITAM Institute of Pharmacy, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
| | - V V Nishanth Goli
- GITAM Institute of Pharmacy, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
11
|
Long acting injectable formulations: the state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00449-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Xie MH, Ge M, Peng JB, Jiang XR, Wang DS, Ji LQ, Ying Y, Wang Z. In-vivo anti-tumor activity of a novel poloxamer-based thermosensitive in situ gel for sustained delivery of norcantharidin. Pharm Dev Technol 2018; 24:623-629. [PMID: 30457414 DOI: 10.1080/10837450.2018.1550788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In order to develop a novel norcantharidin (NCTD) delivery system with slow drug release and specific targeting characteristics, we have developed a Poloxamer-based NCTD thermosensitive in situ gel. The evaluation of the characteristics of this system using both in vitro and in vivo methods was previously reported. However, its anti-tumor activity in vivo is still not confirmed. Thus, the potential anti-tumor activity and relative mechanism were investigated in a murine H22 hepatoma model. Tumor-bearing mice were treated with different dose of NCTD thermosensitive in situ gel (3.3 mg/kg, 6.6 mg/kg, and 9.9 mg/kg, respectively by intra-tumor injection once every three days, totaling 5 injections per group. Control groups included untreated or NCTD injection (2.2 mg/kg, qd) or blank in situ gel. The expression of vascular endothelial growth factor (VEGF) and CD44 in tumor tissue was examined by immunohistochemistry (IHC) staining. Treatment with middle or high dose of NCTD thermosensitive in situ gel significantly induced tumor regression, inhibited VEGF and CD44 expression and improved survival of tumor-bearing mice. The efficacy of NCTD thermosensitive in situ gel is higher than that of free NCTD injection. Therefore, NCTD thermosensitive in situ gel is a novel NCTD delivery approach for chemotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Ming-Hua Xie
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Min Ge
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Jia-Bei Peng
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Xiao-Rui Jiang
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Ding-Sheng Wang
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Li-Qiang Ji
- a Department of Pharmacy , First People's Hospital of Yuhang District , Hangzhou , Zhejiang , China
| | - Yin Ying
- b Department of Pharmacy , Tongde Hospital of Zhejiang Province , Hangzhou , Zhejiang , PR China
| | - Zeng Wang
- c Department of Pharmacy , Zhejiang Cancer Hospital , Hangzhou , Zhejiang , PR China
| |
Collapse
|
13
|
Esposito CL, Kirilov P, Roullin VG. Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications. J Control Release 2018; 271:1-20. [DOI: 10.1016/j.jconrel.2017.12.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
|
14
|
Hu B, Wang W, Wang Y, Yang Y, Xu L, Li S. Degradation of glutamate-based organogels for biodegradable implants: In vitro study and in vivo observation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:80-90. [DOI: 10.1016/j.msec.2017.08.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/30/2022]
|
15
|
Helal HM, Mortada SM, Sallam MA. Paliperidone-Loaded Nanolipomer System for Sustained Delivery and Enhanced Intestinal Permeation: Superiority to Polymeric and Solid Lipid Nanoparticles. AAPS PharmSciTech 2017; 18:1946-1959. [PMID: 27914041 DOI: 10.1208/s12249-016-0657-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Paliperidone (PPD) is the most recent second-generation atypical antipsychotic approved for the treatment of schizophrenia. An immediate release dose causes extrapyramidal side effects. In this work, a novel nanolipomer carrier system for PPD with enhanced intestinal permeability and sustained release properties has been developed and optimized. PPD was successfully encapsulated into a lipomer consisting of a specific combination of biocompatible materials including poly-ε-caprolactone as a polymeric core, Lipoid S75, and Gelucire® 50/13 as a lipid shell and polyvinyl alcohol as a stabilizing agent. The lipomer system was characterized by dynamic light scattering, TEM, DSC, and FTIR. An optimized lipomer formulation possessed a particle size of 168 nm, PDI of 0.2, zeta potential of -23 mV and an encapsulation efficiency of 87.27% ± 0.098. Stability in simulated gastrointestinal fluids investigated in terms of particle size, zeta potential, and encapsulation efficiency measurements ensured the integrity of the nanoparticles upon oral administration. PPD-loaded nanolipomers demonstrated a superior sustained release behavior up to 24 h and better ex vivo intestinal permeation for PPD compared to the corresponding polymeric and solid lipid nanoparticles and drug suspension. The in vitro hemocompatibility test on red blood cells revealed no hemolytic effect of PPD-loaded lipomers which reflects its safety. The elaborated nanohybrid carrier system represents a promising candidate for enhancing the absorption of PPD providing a 2.6-fold increase in the intestinal permeation flux compared to the drug suspension while maintaining a sustained release behavior. It is a convenient alternative to the commercially available dosage form of PPD.
Collapse
|
16
|
Salazar-Bautista SC, Chebil A, Pickaert G, Gaucher C, Jamart-Gregoire B, Durand A, Leonard M. Encapsulation and release of hydrophobic molecules from particles of gelled triglyceride with aminoacid-based low-molecular weight gelators. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive Gels. Gels 2017; 3:E4. [PMID: 30920501 PMCID: PMC6318636 DOI: 10.3390/gels3010004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology-for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)-provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.
Collapse
Affiliation(s)
- M Joan Taylor
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Paul Tomlins
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Tarsem S Sahota
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|
18
|
Li Z, Cao J, Hu B, Li H, Liu H, Han F, Liu Z, Tong C, Li S. Studies on the in vitro and in vivo degradation behavior of amino acid derivative-based organogels. Drug Dev Ind Pharm 2016; 42:1732-41. [DOI: 10.3109/03639045.2016.1171333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Zhen Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Jinxu Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Beibei Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Heran Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Zhenyun Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Chao Tong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| |
Collapse
|
19
|
Li Z, Cao J, Li H, Liu H, Han F, Liu Z, Tong C, Li S. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation. Drug Deliv 2016; 23:3168-3178. [PMID: 26912188 DOI: 10.3109/10717544.2016.1157841] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CONTEXT Orgnaogels based on amino acid derivatives have been widely used in the area of drug delivery. OBJECTIVE An organogel system based on l-lysine derivatives was designed and prepared to induce a thermal sensitive implant with higher transition temperature, better mechanical strength, and shorter gelation time. MATERIALS AND METHODS The organogel was prepared by injectable soybean oil and methyl (S)-2,5-ditetradecanamidopentanoate (MDP), which was synthesized for the first time. Candesartan cilexetil (CC) was chosen as model drug. Different formulations were designed and optimized by response surface method. Thermal, rheology properties, and gelation kinetics of the optimized formulation had been characterized. The release behaviors in vitro, as well as in vivo were evaluated in comparison with the oily solution of drugs. Finally, the local inflammation response of in situ organogel was assessed by histological analysis. RESULTS AND DISCUSSION Results showed that the synthesized gelator, MDP, had a good gelation ability and the organogels obtained via the self-assembly of gelators in vegetable oils exhibited great thermal and rheology properties, which guaranteed their state in body. In vivo pharmacokinetic demonstrated that the organogel formulation could extend the drug release and maintain a therapeutically effective plasma concentration at least 10 d. In addition, this implant showed acceptable moderate inflammation. CONCLUSION The in situ forming l-lysine-derivative-based organogel could be a promising matrix for sustained drug delivery of the drugs with low solubility.
Collapse
Affiliation(s)
- Zhen Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Jinxu Cao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Heran Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Zhenyun Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Chao Tong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
20
|
Parhi R, Suresh P, Pattnaik S. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation. Drug Deliv Transl Res 2016; 6:243-53. [DOI: 10.1007/s13346-015-0276-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Pereira Camelo SR, Franceschi S, Perez E, Girod Fullana S, Ré MI. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm 2015; 42:985-97. [DOI: 10.3109/03639045.2015.1103746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Sophie Franceschi
- Laboratoire Des I.M.R.C.P., Université Paul Sabatier, Toulouse, France, and
| | - Emile Perez
- Laboratoire Des I.M.R.C.P., Université Paul Sabatier, Toulouse, France, and
| | - Sophie Girod Fullana
- Faculty of Sciences Pharmaceutiques, CIRIMAT INPT-CNRS-UPS, Université Toulouse, Toulouse, France
| | - Maria Inês Ré
- Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, Université De Toulouse, Albi CT Cedex, France,
| |
Collapse
|
22
|
Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4862-4869. [PMID: 25932656 DOI: 10.1021/acs.jafc.5b01548] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to use a detailed rheological characterization to gain new insights into the gelation behavior of natural waxes. To make a comprehensive case, six natural waxes (differing in the relative proportion of chemical components: hydrocarbons, fatty alcohols, fatty acids, and wax esters) were selected as organogelators to gel high-oleic sunflower oil. Flow and dynamic rheological properties of organogels prepared at critical gelling concentrations (Cg) of waxes were studied and compared using drag (stress ramp and steady flow) and oscillatory shear (stress and frequency sweeps) tests. Although, none of the organogels satisfied the rheological definition of a "strong gel" (G″/G' (ω) ≤ 0.1), on comparing the samples, the strongest gel (highest critical stress and dynamic, apparent, and static yield stresses) was obtained not with wax containing the highest proportion of wax esters alone (sunflower wax, SFW) but with wax containing wax esters along with a higher proportion of fatty alcohols (carnauba wax, CRW) although at a comparatively higher Cg (4%wt for latter compared to 0.5%wt for former). As expected, gel formation by waxes containing a high proportion of lower melting fatty acids (berry, BW, and fruit wax, FW) required a comparatively higher Cg (6 and 7%wt, respectively), and in addition, these gels showed the lowest values for plateau elastic modulus (G'LVR) and a prominent crossover point at higher frequency. The gelation temperatures (TG'=G″) for all the studied gels were lower than room temperature, except for SFW and CRW. The yielding-type behavior of gels was evident, with most gels showing strong shear sensitivity and a weak thixotropic recovery. The rheological behavior was combined with the results of thermal analysis and microstructure studies (optical, polarized, and cryo-scanning electron microscopy) to explain the gelation properties of these waxes.
Collapse
Affiliation(s)
- Ashok R Patel
- †Vandemoortele Centre for Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Mehrnoosh Babaahmadi
- †Vandemoortele Centre for Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | | - Koen Dewettinck
- †Vandemoortele Centre for Lipid Science and Technology, Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|