Čechová L, Dejmek M, Baszczyňski O, Šaman D, Gao L, Hu E, Stepan G, Jansa P, Janeba Z, Šimon P. Synthesis and anti-human immunodeficiency virus activity of substituted ( o,o-difluorophenyl)-linked-pyrimidines as potent non-nucleoside reverse transcriptase inhibitors.
Antivir Chem Chemother 2019;
27:2040206619826265. [PMID:
30788976 PMCID:
PMC6376552 DOI:
10.1177/2040206619826265]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With the worldwide number of human immunodeficiency virus positive patients stagnant and the increasing emergence of viral strains resistant to current treatment, the development of novel anti-human immunodeficiency virus drug candidates is a perpetual quest of medicinal chemists. Herein, we report a novel group of diarylpyrimidines, non-nucleoside reverse transcriptase inhibitors, which represents an important class of current anti-human immunodeficiency virus therapy. Series of diarylpyrimidines containing o,o-difluorophenyl (A-arm), 4-cyanophenylamino (B-arm), and a small substituent (e.g. NH2, OMe) at positions 2, 4, and 6 of the pyrimidine ring were prepared. The A-arm was modified in the para position (F or OMe) and linked to the central pyrimidine core with a variable spacer (CO, O, NH). Antiviral activities of 20 compounds were measured against wild type human immunodeficiency virus-1 and mutant reverse transcriptase strains (K103N, Y181C) using a cytoprotection assay. To the most promising structural motives belong the o,o-difluoro-p-methoxy A-arm in position 4, and the amino group in position 6 of pyrimidine. Single digit nanomolar activities with no significant toxicity (CC50 > 17,000 nM) were found for compounds 35 (EC50 = 2 nM), 37 (EC50 = 3 nM), and 13 (EC50 = 4 nM) having O, NH, and CO linkers, respectively.
Collapse