1
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
2
|
Yilmaz EG, Ece E, Erdem Ö, Eş I, Inci F. A Sustainable Solution to Skin Diseases: Ecofriendly Transdermal Patches. Pharmaceutics 2023; 15:579. [PMID: 36839902 PMCID: PMC9960884 DOI: 10.3390/pharmaceutics15020579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Emre Ece
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
3
|
Formulation of tizanidine hydrochloride-loaded provesicular system for improved oral delivery and therapeutic activity employing a 2 3 full factorial design. Drug Deliv Transl Res 2023; 13:580-592. [PMID: 35927549 PMCID: PMC9794545 DOI: 10.1007/s13346-022-01217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
Tizanidine hydrochloride (TZN) is one of the most effective centrally acting skeletal muscle relaxants. The objective of this study is to prepare TZN-loaded proniosomes (TZN-PN) aiming at enhanced oral delivery and therapeutic activity. TZN-PN were prepared by coacervation phase separation method. The developed vesicles were characterized via entrapment efficiency percentage (EE%), vesicular size (VS), and zeta potential (ZP). A 23 full factorial design was employed to attain an optimized TZN-PN formulation. The optimized TZN-PN were further characterized via in vitro release study and transmission electron microscopy (TEM). In vivo rotarod test was employed for determination of the muscle relaxant activities of rats and levels of GABA and EAAT2 were detected. The developed TZN-PN exhibited relatively high EE% (75.78-85.45%), a VS ranging between (348-559 nm), and a ZP (-26.47 to -59.64). In vitro release profiles revealed sustained release of TZN from the optimized TZN-PN, compared to free drug up to 24 h. In vivo rotarod study revealed that the elevation in coordination was in the following order: normal control < free TZN < market product < TZN-PN (F6). Moreover, the optimized TZN-PN exhibited significant elevated coordination activity by 39% and 26% compared to control group and market product group, respectively. This was accompanied with an elevation in both GABA and EAAT2 serum levels. Thus, it could be concluded that encapsulation of TZN in the provesicular nanosystem proniosomes has enhanced the anti-nociceptive effect of the drug and consequently its therapeutic activity.
Collapse
|
4
|
Aliskiren Hemifumarate Proliposomes for Improved Oral Drug Delivery: Formulation Development, In Vitro and In Vivo Permeability Testing. Molecules 2022; 27:molecules27154828. [PMID: 35956779 PMCID: PMC9369865 DOI: 10.3390/molecules27154828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to develop proliposomal formulations for a poorly bioavailable drug, aliskiren hemifumarate (AKH). A solvent evaporation method was used to prepare proliposomes using different lipids. The lipids of selection were soy phosphatidylcholine (SPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoylphosphatidylglycerol sodium (DMPG Na), stearylamine, and cholesterol in various ratios. Proliposomes were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics upon hydration with aqueous phase. In vitro drug release studies were conducted in 0.01 N hydrochloric acid using USP type II dissolution apparatus. Parallel artificial membrane permeation assay (PAMPA) and Caco-2 cell line models were used to study the in vitro drug permeation. Male Sprague-Dawley (SD) rats were used to conduct in vivo pharmacokinetic studies. Among different formulations, proliposomes with drug/DMPC/cholesterol/stearylamine in the ratio of 1:5:0.025:0.050 (w/w/w/w) demonstrated the desired particle size, higher zeta potential, and higher encapsulation efficiency. The PAMPA and Caco-2 cell line experiments showed a significantly higher permeability of AKH with proliposomes as compared to pure AKH. In animal studies, the optimized formulation of proliposomes showed significant improvement in the rate and extent of absorption of AKH. Specifically, following a single oral administration, the relative bioavailability of AKH proliposome formulation was 230% when compared to pure AKH suspension.
Collapse
|
5
|
Behravan N, Zahedipour F, Jaafari MR, Johnston TP, Sahebkar A. Lipid-based nanoparticulate delivery systems for HER2-positive breast cancer immunotherapy. Life Sci 2022; 291:120294. [PMID: 34998838 DOI: 10.1016/j.lfs.2021.120294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Lipid-based nanoparticulate delivery platforms such as liposomes help overcome cell and tissue barriers and allow prolonged therapeutic plasma drug concentrations, simultaneous targeting of tumor tissue, and increased bioavailability of numerous drugs used for treatment of cancer. The human epidermal growth factor receptor, HER2, is an important player in the pathogenesis of breast cancer and is considered a potential cancer biomarker for the design of immunotherapeutics. HER2-positive breast cancer is found in up to 30% of breast cancer patients. Currently, a variety of lipid nanoparticulate systems are being evaluated in preclinical settings and in clinical trials for targeting HER2-positive breast cancer. Advances in functionalized anti-HER2 lipid nanoparticulates have demonstrated promise and may lead to the development of new nano-immunotherapy protocols against HER2 positive breast cancer. Here we present a review of the most up-to-date literature, including our own research, on the use of lipid nanoparticulate carriers in immunotherapy of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Nima Behravan
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Dhiman N, Sarvaiya J, Mohindroo P. A drift on liposomes to proliposomes: recent advances and promising approaches. J Liposome Res 2022; 32:317-331. [PMID: 35037565 DOI: 10.1080/08982104.2021.2019762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes are nano-structured vesicles, made up of phospholipids that provide active ingredients at the site of action at a predetermined rate and add the advantage of the sustained-release formulation. Liposomes have stability issues that tend to agglomerate and fuse upon storage, which reflects their drawback. Hence to overcome the aggregation, fusion, hydrolysis, and/or oxidation problems associated with liposomes a new technology named Proliposomes has been introduced. Proliposomes are defined as carbohydrate carriers coated with phospholipids, which upon addition of water generate liposomes. The objective of the review is to cover the concept of proliposomes for pulmonary or alveolar delivery of drugs and compare it with that of liposomes; highlight the methods used for preparations along with the characterization parameters. This is the first systematic review that covers the categorization of liposomes, characteristic methods, and recent examples of drugs from 2015 to 2021, supplied in form of proliposomes to the macrophages as well as others and offers an advantage over the free drug by offering a prolonged drug release and sufficient bioavailability in addition to overcome the stability issues related to liposomes. Since this is a very new technology and many scientists are continuously working in this field to make the drug available for clinical trials and ultimately in the market for the targeted delivery of drugs with better storage life.HIGHLIGHTSProliposomes as an alternative to overwhelm the stability and storage-related issues of liposomes.Anhydrous carbohydrate carriers are utilized for proliposomal preparation.Inhaled delivery of drugs as solid lipid nanoparticles offers a significant impact on pulmonary tract infections, particularly in cystic fibrosis.Size of liposomes attained after proliposome hydrolysis is critical for drug delivery via respiration.
Collapse
Affiliation(s)
- Neha Dhiman
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, India
| | - Jayrajsinh Sarvaiya
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, India
| | - Poorti Mohindroo
- School of Engineering and Technology, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
7
|
Qiu H, Guo Z, Xu Q, Mao S, Wu W. Evaluation on absorption risks of amentoflavone after oral administration in rats. Biopharm Drug Dispos 2021; 42:435-443. [PMID: 34655436 DOI: 10.1002/bdd.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022]
Abstract
The present study was aimed to systemically assess the absorption risks of amentoflavone (AMF). Physicochemical properties of AMF were evaluated using in vitro assays including water solubility and stability in both simulated gastric and intestinal fluids, as well as logD, pka and permeability studies in a monolayer Caco-2 model. The results together suggested that AMF was a compound with moderate intestinal absorption and the poor solubility was the key rate-limiting step for the oral absorption of AMF, and PVP-K30 were thus used as a solubilizer to improve its solubility and oral bioavailability. Furthermore, studies on pharmacokinetics and biliary excretion of AMF with tween 80 or PVP-K30 were performed after oral administration, and the results showed that the percentage of AMF conjugates in bile was determined up to be 96.73% and no AMF conjugates were detected in rat plasma. The above results revealed that the poor oral absorption of AMF may probably be attributed to the low solubility, high level of metabolism and hepatic first-pass effects. The relative bioavailability of AMF solubilized by PVP-K30 was about 2-fold than that of AMF suspended in 1% tween 80. The present study may help provide scientific insights to guide the rational design of AMF into more efficient formulation systems.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengbing Guo
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Qian Xu
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Shengfang Mao
- Department of Pharmaceutics, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenming Wu
- Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Velagacherla V, Suresh A, Mehta CH, Nayak UY. Advances and challenges in nintedanib drug delivery. Expert Opin Drug Deliv 2021; 18:1687-1706. [PMID: 34556001 DOI: 10.1080/17425247.2021.1985460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Nintedanib (N.T.B) is an orally administered tyrosine kinase inhibitor that has been approved recently by U.S.F.D.A for idiopathic pulmonary fibrosis (I.P.F) and systemic sclerosis-associated interstitial lung disease (S.Sc-I.L.D). N.T.B is also prescribed in COVID-19 patients associated with I.P.F. However, it has an extremely low bioavailability of around 4.7%, and hence, researchers are attempting to address this drawback by different approaches. AREAS COVERED This review article focuses on enlisting all the formulation attempts explored by researchers to increase the bioavailability of N.T.B while also providing meaningful insight into the unexplored areas in formulation development, such as targeting of the lymphatic system and transdermal delivery. All the patents on the formulation development of N.T.B have also been summarized. EXPERT OPINION N.T.B has the potential to act on multiple diseases that are still being discovered, but its extremely low bioavailability is a challenge that is to be dealt with for obtaining the full benefit. Few studies have been performed aiming at improving the bioavailability, but there are unexplored areas that can be used, a few of which are explained in this article. However, the ability to reproduce laboratory results when scaling up to the industry level is the only factor to be taken into consideration.
Collapse
Affiliation(s)
- Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Investigation of the Factors Responsible for the Poor Oral Bioavailability of Acacetin in Rats: Physicochemical and Biopharmaceutical Aspects. Pharmaceutics 2021; 13:pharmaceutics13020175. [PMID: 33525442 PMCID: PMC7911516 DOI: 10.3390/pharmaceutics13020175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/26/2022] Open
Abstract
Acacetin, an important ingredient of acacia honey and a component of several medicinal plants, exhibits therapeutic effects such as antioxidative, anticancer, anti-inflammatory, and anti-plasmodial activities. However, to date, studies reporting a systematic investigation of the in vivo fate of orally administered acacetin are limited. Moreover, the in vitro physicochemical and biopharmaceutical properties of acacetin in the gastrointestinal (GI) tract and their pharmacokinetic impacts remain unclear. Therefore, in this study, we aimed to systematically investigate the oral absorption and disposition of acacetin using relevant rat models. Acacetin exhibited poor solubility (≤119 ng/mL) and relatively low stability (27.5–62.0% remaining after 24 h) in pH 7 phosphate buffer and simulated GI fluids. A major portion (97.1%) of the initially injected acacetin dose remained unabsorbed in the jejunal segments, and the oral bioavailability of acacetin was very low at 2.34%. The systemic metabolism of acacetin occurred ubiquitously in various tissues (particularly in the liver, where it occurred most extensively), resulting in very high total plasma clearance of 199 ± 36 mL/min/kg. Collectively, the poor oral bioavailability of acacetin could be attributed mainly to its poor solubility and low GI luminal stability.
Collapse
|
10
|
Romana B, Hassan MM, Sonvico F, Garrastazu Pereira G, Mason AF, Thordarson P, Bremmell KE, Barnes TJ, Prestidge CA. A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. Eur J Pharm Biopharm 2020; 154:338-347. [PMID: 32739535 DOI: 10.1016/j.ejpb.2020.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
A novel liposome-micelle-hybrid (LMH) carrier system was developed as a superior oral drug delivery platform compared to conventional liposome or micelle formulations. The optimal LMH system was engineered by encapsulating TPGS micelles in the aqueous core of liposomes and its efficacy for oral delivery was demonstrated using lovastatin (LOV) as a model poorly soluble drug with P-gp (permeability glycoprotein) limited intestinal absorption. LOV-LMH was characterised as unilamellar, spherical vesicles encapsulating micellar structures within the interior aqueous core and showing an average diameter below 200 nm. LMH demonstrated enhanced drug loading, water apparent solubility and extended/controlled release of LOV compared to conventional liposomes and micelles. LMH exhibited enhanced LOV absorption and transportation in a Caco-2 cell monolayer model of the intestine by inhibiting the P-gp transporter system compared to free LOV. The LMH system is a promising novel oral delivery approach for enhancing bioavailability of poorly water-soluble drugs, especially those presenting P-gp effluxes limited absorption.
Collapse
Affiliation(s)
- Bilquis Romana
- School of Chemistry, The Australian Centre for Nanomedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia; University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia
| | - Md Musfizur Hassan
- School of Chemistry, The Australian Centre for Nanomedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fabio Sonvico
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gabriela Garrastazu Pereira
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Alex F Mason
- School of Chemistry, The Australian Centre for Nanomedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kristen E Bremmell
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| |
Collapse
|
11
|
Rahamathulla M, H.V G, Veerapu G, Hani U, Alhamhoom Y, Alqahtani A, Moin A. Characterization, Optimization, In Vitro and In Vivo Evaluation of Simvastatin Proliposomes, as a Drug Delivery. AAPS PharmSciTech 2020; 21:129. [PMID: 32405982 DOI: 10.1208/s12249-020-01666-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
Simvastatin a cholesterol-lowering agent used to treat hypercholesterolemia, coronary heart disease, and dyslipidemia. However, simvastatin (SV) has shown low oral bioavailability in GIT. The main purpose of the work was to develop proliposomal formulations to increase the oral bioavailability of SV. Film deposition on the carrier method has been used to prepare the proliposomes. The proliposomes were assessed for morphology, particulate size, entrapment efficacy, drug-polymer compatibility, in vitro and in vivo studies. FTIR and DSC results revealed no drug-polymer interaction. SEM and XRD analysis conform; proliposomes are spherical, amorphous in nature, so that it enhances the solubility of SV between 15.01 ± 0.026 and 57.80 ± 0.015 μg/mL in pH 7.4 phosphate buffer. The optimised formulation (PL6) shows drug release up to 12 h (99.78 ± 0.067%). The pharmacokinetics of pure SV and SV proliposomes (SVP) in rats were Tmax 2 ± 0.5 and 4 ± 0.7 h, Cmax 10.4 ± 2.921 and 21.18 ± 12.321 μg/mL, AUC0-∞ 67.124 ± 0.23 and 179.75 ± 1.541 μg/mL h, respectively. Optimised SVP shows a significant improvement in the rate and absorption of SV. The optimised formulation showed enhanced oral bioavailability of SV in Albino Wister rats and offers a new technique to improve the poor water-soluble drug absorption in the gastrointestinal system.
Collapse
|
12
|
Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020; 12:pharmaceutics12030264. [PMID: 32183185 PMCID: PMC7151102 DOI: 10.3390/pharmaceutics12030264] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
It has been known that a considerable number of drugs in clinical use or under development are water-insoluble drugs with poor bioavailability (BA). The liposomal delivery system has drawn attention as one of the noteworthy approaches to increase dissolution and subsequently absorption in the gastrointestinal (GI) tract because of its biocompatibility and ability to encapsulate hydrophobic molecules in the lipid domain. However, there have been several drawbacks, such as structural instability in the GI tract and poor permeability across intestinal epithelia because of its relatively large size. In addition, there have been no liposomal formulations approved for oral use to date, despite the success of parenteral liposomes. Nevertheless, liposomal oral delivery has resurged with the rapid increase of published studies in the last decade. However, it is discouraging that most of this research has been in vitro studies only and there have not been many water-insoluble drugs with in vivo data. The present review focused on the in vivo evidence for the improved BA of water-insoluble drugs using liposomes to resolve doubts raised concerning liposomal oral delivery and attempted to provide insight by highlighting the approaches used for in vivo achievements.
Collapse
|
13
|
Jeon D, Kim KT, Baek MJ, Kim DH, Lee JY, Kim DD. Preparation and evaluation of celecoxib-loaded proliposomes with high lipid content. Eur J Pharm Biopharm 2019; 141:139-148. [DOI: 10.1016/j.ejpb.2019.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
|
14
|
Li J, Yang Y, Ning E, Peng Y, Zhang J. Mechanisms of poor oral bioavailability of flavonoid Morin in rats: From physicochemical to biopharmaceutical evaluations. Eur J Pharm Sci 2019; 128:290-298. [DOI: 10.1016/j.ejps.2018.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/30/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
|
15
|
Immunoliposomes with Simvastatin as a Potential Therapeutic in Treatment of Breast Cancer Cells Overexpressing HER2-An In Vitro Study. Cancers (Basel) 2018; 10:cancers10110418. [PMID: 30388834 PMCID: PMC6266203 DOI: 10.3390/cancers10110418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
Lipophilic statins are promising candidates for breast cancer treatment. However, anticancer therapy requires much higher doses of statins than can be delivered orally, and such high doses are known to exert more adverse effects. The main objective of our study was to design a targeted, therapeutic liposomal carrier of simvastatin characterised by high stability and specificity towards breast cancer cells. We chose SKBR3, the cell line that showed the highest sensitivity for simvastatin and liposomal simvastatin treatment. Additionally, SKBR3 has a notably high expression level of human epidermal growth factor receptor 2 (HER2), which we used as a target for our immunoliposomes. To do so we attached humanized anti-HER2 antibody to the envelope of liposomes. We tested the stability and selectivity of the proposed formulation along with the toxicity, ability to induce apoptosis and the effect on signalling pathways involving Akt and Erk kinases. The immunoliposomal formulation of simvastatin is characterized by long-term stability, high selectivity towards HER2-overexpressing breast cancer cells, low non-specific cytotoxicity and effective inhibition of the growth of target cells, presumably by inhibition of signalling pathways and induction of apoptosis. Hence, for the first time, we propose the use of immunoliposomes with simvastatin, targeted directly towards breast cancer cells overexpressing HER2. The prepared immunoliposomes may become a proof of concept in developing new anticancer therapy.
Collapse
|
16
|
Arregui JR, Kovvasu SP, Betageri GV. Daptomycin Proliposomes for Oral Delivery: Formulation, Characterization, and In Vivo Pharmacokinetics. AAPS PharmSciTech 2018; 19:1802-1809. [PMID: 29616488 DOI: 10.1208/s12249-018-0989-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/08/2018] [Indexed: 01/23/2023] Open
Abstract
The aim of this study was to develop a proliposomal formulation of lipopeptide antibiotic drug daptomycin (DAP) for oral delivery. Thin film hydration was the selected method for preparation of proliposomes. Different phospholipids including soy-phosphatidylcholine (SPC), hydrogenated egg-phosphatidylcholine (HEPC), and distearoyl-phosphatidylcholine (DSPC) were evaluated in combination with cholesterol. The inclusion of surface charge modifiers in the formulation such as dicetyl phosphate (DCP) and stearylamine (SA) to enhance drug encapsulation was also evaluated. Particle size, surface charge, and encapsulation efficiency were performed on daptomycin-hydrated proliposomes as part of physical characterization. USP type II dissolution apparatus with phosphate buffer (pH 6.8) was used for in vitro drug release studies. Optimized formulation was evaluated for in vivo pharmacokinetics after oral administration to Sprague-Dawley rats. Proliposomes composed of SPC exhibited higher entrapment efficiency than those containing HEPC or DSPC. The highest entrapment efficiency was achieved by positively charged SPC-SA proliposomes, showing an encapsulation efficiency of 92% and a zeta potential of + 28 mV. In vitro drug release of optimized formulation demonstrated efficient drug retention totaling for less than 20% drug release within the first 60 min and only 42% drug release after 2 h. Pharmacokinetic parameters after single oral administration of optimized proliposomal formulation indicated a significant increase in oral bioavailability of DAP administered as SPC-SA proliposomes when compared to drug solution. Based on these results, incorporation of charge modifiers into proliposomes may increase drug loading and proliposomes an attractive carrier for oral delivery of daptomycin.
Collapse
|
17
|
Song L, Tao X, Lin L, Chen C, Yao H, He G, Zou G, Cao Z, Yan S, Lu L, Yi H, Wu D, Tan S, Ouyang W, Dai Z, Deng X. Cerasomal Lovastatin Nanohybrids for Efficient Inhibition of Triple-Negative Breast Cancer Stem Cells To Improve Therapeutic Efficacy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7022-7030. [PMID: 29405062 DOI: 10.1021/acsami.8b01633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a higher risk in younger women and a poorer prognosis and without targeted therapies available currently. Cancer stem cells (CSCs) are increasingly recognized as the main cause of treatment failure and tumor recurrence. The present paper reports the encapsulation of lovastatin (LV) into cerasomes. Compared with free LV, cerasome-encapsulated LV (C-LV) nanohybrids showed cytotoxicity to MDA-MB-231 CSCs in a dose- and time-dependent manner. Furthermore, intravenous injection of C-LV nanohybrids resulted in a significant tumor size reduction in a dose-dependent manner in xenograft tumors derived from subcutaneous inoculation of MDA-MB-231 cells. Furthermore, histopathological and/or immunohistochemical analysis revealed that C-LV nanohybrids significantly induced mammary gland formation and apoptosis and inhibited angiogenesis, the CSC phenotype, and the epithelial-to-mesenchymal transition in xenograft tumors. Most importantly, C-LV nanohybrids were found to be more effective than free LV in inhibiting the growth of breast cancer xenografts and the stemness properties in vivo. To the best of our knowledge, ours is the first demonstration of nanohybrids for efficient inhibition of CSCs derived from TNBC, offering a new option for the TNBC treatment.
Collapse
Affiliation(s)
- Liujiang Song
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Xiaojun Tao
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Li Lin
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Chao Chen
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Hui Yao
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Guangchun He
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Guangyang Zou
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Zhong Cao
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Shichao Yan
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Lu Lu
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Huimei Yi
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Di Wu
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Siyuan Tan
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Wanxin Ouyang
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Xiyun Deng
- Department of Clinical Medicine (LS), Department of Pharmacy (XT, DW, ST, WO), Department of Pathology (CC, HY, GH, SY, LL, XD), Hunan Normal University Medical College , Changsha, Hunan 410013, China
| |
Collapse
|
18
|
Ahammed V, Narayan R, Paul J, Nayak Y, Roy B, Shavi GV, Nayak UY. Development and in vivo evaluation of functionalized ritonavir proliposomes for lymphatic targeting. Life Sci 2017. [DOI: 10.1016/j.lfs.2017.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Boussouar I, Chen Q, Chen X, Zhang Y, Zhang F, Tian D, White HS, Li H. Single Nanochannel Platform for Detecting Chiral Drugs. Anal Chem 2016; 89:1110-1116. [DOI: 10.1021/acs.analchem.6b02682] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Imene Boussouar
- Key
Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qianjin Chen
- Department
of Chemistry, University of Utah, 315 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Xue Chen
- Key
Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yulun Zhang
- Department
of Chemistry, University of Utah, 315 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Fan Zhang
- Key
Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Demei Tian
- Key
Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Henry S. White
- Department
of Chemistry, University of Utah, 315 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Haibing Li
- Key
Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
20
|
Zhang S, Yan H, Yu P, Xia Y, Zhang W, Liu J. Development of protocatechualdehyde proliposomes-based sustained-release pellets with improved bioavailability and desired pharmacokinetic behavior for angina chronotherapy. Eur J Pharm Sci 2016; 93:341-50. [DOI: 10.1016/j.ejps.2016.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
21
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Yasmin R, Rao S, Bremmell KE, Prestidge CA. Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs. AAPS JOURNAL 2016; 18:876-85. [DOI: 10.1208/s12248-015-9864-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
|
23
|
Hao F, He Y, Sun Y, Zheng B, Liu Y, Wang X, Zhang Y, Lee RJ, Teng L, Xie J. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate. Saudi J Biol Sci 2016; 23:S113-25. [PMID: 26858556 PMCID: PMC4705292 DOI: 10.1016/j.sjbs.2015.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022] Open
Abstract
Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0-∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0-∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and AUC0-∞ 2082.49 ± 408.33 ng/ml h for the P-GFS. The bioavailability of P-GFS was nearly 284% and 181% of the GFS and Zhengyuan tablets respectively. In conclusion, the proliposomes significantly enhanced the drug bioavailability, absorption in the gastrointestinal tract and decreased its elimination time of GRe in rats and could be selectively applied for oral delivery of GFS.
Collapse
Affiliation(s)
- Fei Hao
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yanxi He
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yating Sun
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Bin Zheng
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yan Liu
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Xinmei Wang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yongkai Zhang
- The Firest Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Robert J. Lee
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Lirong Teng
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Jing Xie
- College of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
24
|
Zheng B, Yang S, Fan C, Bi Y, Du L, Zhao L, Lee RJ, Teng L, Teng L, Xie J. Oleic acid derivative of polyethylenimine-functionalized proliposomes for enhancing oral bioavailability of extract of Ginkgo biloba. Drug Deliv 2015; 23:1194-203. [PMID: 26635185 DOI: 10.3109/10717544.2015.1101790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The present systematic study focused to investigate the oleic acid derivative of branched polyethylenimine (bPEI-OA)-functionalized proliposomes for improving the oral delivery of extract of Ginkgo biloba (GbE). The GbE proliposomes were prepared by a spray drying method at varying ratios of egg yolk phosphatidylcholine and cholesterol, and the optimized formulation was tailored with bPEI-OA to obtain bPEI-OA-functionalized proliposomes. The formulations were characterized for particle size, zeta potential, and entrapment efficiency. The release of GbE from proliposomes exhibited a sustained release. And the release rate was regulated by changing the amount of bPEI-OA on the proliposomes. The physical state characterization studies showed some interactions between GbE and other materials, such as hydrogen bonds and van der Waals forces during the process of preparation of proliposomes. The in situ single-pass perfusion and oral bioavailability studies were performed in rats. The significant increase in absorption constant (Ka) and apparent permeability coefficient (Papp) from bPEI-OA-functionalized proliposomes indicated the importance of positive charge for effective uptake across the gastrointestinal tract. The oral bioavailability of bPEI-OA-functionalized proliposomes was remarkable enhanced in comparison with control and conventional proliposomes. The bPEI-OA-functionalized proliposomes showed great potential of improving oral absorption of GbE as a suitable carrier.
Collapse
Affiliation(s)
- Bin Zheng
- a College of Life Science, Jilin University , Changchun , Jilin , China
| | - Shuang Yang
- a College of Life Science, Jilin University , Changchun , Jilin , China
| | - Chunyu Fan
- a College of Life Science, Jilin University , Changchun , Jilin , China
| | - Ye Bi
- a College of Life Science, Jilin University , Changchun , Jilin , China
| | - Lin Du
- b The First Hospital of Jilin University , Changchun , Jilin , China
| | - Lingzhi Zhao
- c The Secord Hospital of Jilin University , Changchun , Jilin , China , and
| | - Robert J Lee
- a College of Life Science, Jilin University , Changchun , Jilin , China .,d College of Pharmacy, The Ohio State University , Columbus , OH , USA
| | - Lesheng Teng
- a College of Life Science, Jilin University , Changchun , Jilin , China
| | - Lirong Teng
- a College of Life Science, Jilin University , Changchun , Jilin , China
| | - Jing Xie
- a College of Life Science, Jilin University , Changchun , Jilin , China
| |
Collapse
|
25
|
Fong SYK, Brandl M, Bauer-Brandl A. Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis. Eur J Pharm Sci 2015; 80:89-110. [PMID: 26296863 DOI: 10.1016/j.ejps.2015.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 12/24/2022]
Abstract
Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be used to identify the best candidates for oral solid PL formulation. In addition to scientific literature, 13 solid PL formulation-related patents that addressed the issue of low oral bioavailability have been identified and summarized; whereas no clinical study was identified from the current search. By providing systematic information and meta-analysis on studies that applied the principle of 'proliposomes' for oral bioavailability enhancement, the current review should be insightful for formulation scientists who wish to adopt the PL based approach to overcome the solubility, permeability and bioavailability issues of orally delivered drugs.
Collapse
Affiliation(s)
- Sophia Yui Kau Fong
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
26
|
Nekkanti V, Venkatesan N, Wang Z, Betageri GV. Improved oral bioavailability of valsartan using proliposomes: design, characterization andin vivopharmacokinetics. Drug Dev Ind Pharm 2015; 41:2077-88. [DOI: 10.3109/03639045.2015.1075026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|