1
|
Kapourani A, Pantazos I, Valkanioti V, Chatzitheodoridou M, Kalogeri C, Barmpalexis P. Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions. Int J Pharm 2025; 671:125242. [PMID: 39842744 DOI: 10.1016/j.ijpharm.2025.125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation . To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC). Three different matrices/carriers (Soluplus®, SOL, povidone, PVP, and copovidone, PVPVA) were employed to evaluate the combined influence of preparation method, matrix/carrier type, and drug loading on ASD performance. Supersaturation behavior during dissolution, particularly its dependence on the Sink Index (SI), was a key focus. All ASDs showed successful amorphization, but molecular near-order structures differed based on the preparation method. ATR-FTIR spectroscopy revealed stronger molecular interactions in M-QC ASDs (compared to SE). Dissolution studies under supersaturation conditions (SI = 0.1 and SI = 0.2) highlighted significant performance differences. M-QC ASDs consistently exhibited higher in vitro AUC(0→t) values under non-sink conditions compared to crystalline IBU. Conversely, SE ASDs showed improved supersaturation primarily under low SI conditions, especially with SOL at low drug loadings. The findings underscore the need for a systematic approach in developing ASDs, considering preparation method, matrix/carrier type, drug loading and dissolution study conditions collectively. These factors significantly influence dissolution behavior and supersaturation, emphasizing that they should not be independently studied but evaluated comprehensively to optimize ASD performance.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioannis Pantazos
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vasiliki Valkanioti
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Melina Chatzitheodoridou
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Christina Kalogeri
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
| |
Collapse
|
2
|
Walter S, Mileo PGM, Afzal MAF, Kyeremateng SO, Degenhardt M, Browning AR, Shelley JC. Predicting the Release Mechanism of Amorphous Solid Dispersions: A Combination of Thermodynamic Modeling and In Silico Molecular Simulation. Pharmaceutics 2024; 16:1292. [PMID: 39458621 PMCID: PMC11510624 DOI: 10.3390/pharmaceutics16101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND During the dissolution of amorphous solid dispersion (ASD) formulations, the drug load (DL) often impacts the release mechanism and the occurrence of loss of release (LoR). The ASD/water interfacial gel layer and its specific phase behavior in connection with DL strongly dictate the release mechanism and LoR of ASDs, as reported in the literature. Thermodynamically driven liquid-liquid phase separation (LLPS) and/or drug crystallization at the interface are the key phase transformations that drive LoR. METHODS In this study, a combination of Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) thermodynamic modeling and in silico molecular simulation was applied to investigate the release mechanism and the occurrence LoR of an ASD formulation consisting of ritonavir as the active pharmaceutical ingredient (API) and the polymer, polyvinylpyrrolidone-co-vinyl acetate (PVPVA64). A thermodynamically modeled ternary phase diagram of ritonavir (PVPVA64) and water was applied to predict DL-dependent LLPS in the ASD/water interfacial gel layer. Microscopic Erosion Time Testing (METT) was used to experimentally validate the phase diagram predictions. Additionally, in silico molecular simulation was applied to provide further insights into the phase separation, the release mechanism, and aggregation behavior on a molecular level. RESULTS Thermodynamic modeling, molecular simulation, and experimental results were consistent and complementary, providing evidence that ASD/water interactions and phase separation are essential factors driving the dissolution behavior and LoR at 40 wt% DL of the investigated ritonavir/PVPVA64 ASD system, consistent with previous studies. CONCLUSIONS This study provides insights into the potential of blending thermodynamic modeling, molecular simulation, and experimental research to comprehensively understand ASD formulations. Such a combined approach can be leveraged as a computational framework to gain insights into the ASD dissolution mechanism, thereby facilitating in silico screening, designing, and optimization of formulations with the benefit of significantly reducing the number of experimental tests.
Collapse
Affiliation(s)
- Stefanie Walter
- AbbVie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstraße, 67061 Ludwigshafen am Rhein, Germany; (S.W.); (M.D.)
| | - Paulo G. M. Mileo
- Materials Science, Schrödinger GmbH, Glücksteinallee 25, 68163 Mannheim, Germany;
| | - Mohammad Atif Faiz Afzal
- Materials Science, Schrödinger LLC, Suite 1300, 101 SW Main Street, Portland, OR 97204, USA; (M.A.F.A.); (A.R.B.)
| | - Samuel O. Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstraße, 67061 Ludwigshafen am Rhein, Germany; (S.W.); (M.D.)
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstraße, 67061 Ludwigshafen am Rhein, Germany; (S.W.); (M.D.)
| | - Andrea R. Browning
- Materials Science, Schrödinger LLC, Suite 1300, 101 SW Main Street, Portland, OR 97204, USA; (M.A.F.A.); (A.R.B.)
| | - John C. Shelley
- Life Science, Schrödinger LLC, Suite 1300, 101 SW Main Street, Portland, OR 97204, USA
| |
Collapse
|
3
|
Cherniienko A, Lesyk R, Zaprutko L, Pawełczyk A. IR-EcoSpectra: Exploring sustainable ex situ and in situ FTIR applications for green chemical and pharmaceutical analysis. J Pharm Anal 2024; 14:100951. [PMID: 39291244 PMCID: PMC11406085 DOI: 10.1016/j.jpha.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 09/19/2024] Open
Abstract
In various industries, particularly in the chemical and pharmaceutical fields, Fourier transform infrared spectroscopy (FTIR) spectroscopy provides a unique capacity to detect and characterise complex chemicals while minimising environmental damage by minimal waste generation and reducing the need for extensive sample preparation or use of harmful reagents. This review showcases the versatility of ex situ and in situ FTIR applications for substance identification, analysis, and dynamic monitoring. Ex situ FTIR spectroscopy's accuracy in identifying impurities, monitoring crystallisation processes, and regulating medication release patterns improves product quality, safety, and efficacy. Furthermore, its quantification capabilities enable more effective drug development, dosage procedures, and quality control practices, all of which are consistent with green analytical principles. On the other hand, in situ FTIR spectroscopy appears to be a novel tool for the real-time investigation of molecular changes during reactions and processes, allowing for the monitoring of drug release kinetics, crystallisation dynamics, and surface contacts, as well as providing vital insights into material behaviour. The combination of ex situ FTIR precision and in situ FTIR dynamic capabilities gives a comprehensive analytical framework for developing green practices, quality control, and innovation in the chemical and pharmaceutical industries. This review presents the wide range of applications of ex situ and in situ FTIR spectroscopy in chemical, pharmaceutical and medical fields as an analytical green chemistry tool. However, further study is required to fully realise FTIR's potential and develop new applications that improve sustainability in these areas.
Collapse
Affiliation(s)
- Alina Cherniienko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| | - Anna Pawełczyk
- Department of Organic Chemistry, Poznan University of Medical Sciences, Poznan, 60-203, Poland
| |
Collapse
|
4
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
5
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
van Haaren C, De Bock M, Kazarian SG. Advances in ATR-FTIR Spectroscopic Imaging for the Analysis of Tablet Dissolution and Drug Release. Molecules 2023; 28:4705. [PMID: 37375260 DOI: 10.3390/molecules28124705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
One of the major challenges in the development of effective pharmaceutical formulations for oral administration is the poor solubility of active pharmaceutical ingredients. For this reason, the dissolution process and drug release from solid oral dosage forms, such as tablets, is usually thoroughly studied in order to understand the dissolution behaviour under various conditions and optimize the formulation accordingly. Standard dissolution tests used in the pharmaceutical industry provide information on the amount of drug released over time; however, these do not allow for a detailed analysis of the underlying chemical and physical mechanisms of tablet dissolution. FTIR spectroscopic imaging, by contrast, does offer the ability to study these processes with high spatial and chemical specificity. As such, the method allows us to see the chemical and physical processes which occur inside the tablet as it dissolves. In this review, the power of ATR-FTIR spectroscopic imaging is demonstrated by presenting a number of successful applications of this chemical imaging technique to dissolution and drug release studies for a range of different pharmaceutical formulations and study conditions. Understanding these processes is essential for the development of effective oral dosage forms and optimization of pharmaceutical formulations.
Collapse
Affiliation(s)
- Céline van Haaren
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marieke De Bock
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
7
|
Dohrn S, Kyeremateng SO, Bochmann E, Sobich E, Wahl A, Liepold B, Sadowski G, Degenhardt M. Thermodynamic Modeling of the Amorphous Solid Dispersion-Water Interfacial Layer and Its Impact on the Release Mechanism. Pharmaceutics 2023; 15:pharmaceutics15051539. [PMID: 37242781 DOI: 10.3390/pharmaceutics15051539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
During the dissolution of amorphous solid dispersion (ASD) formulations, the gel layer that forms at the ASD/water interface strongly dictates the release of the active pharmaceutical ingredient (API) and, hence, the dissolution performance. Several studies have demonstrated that the switch of the gel layer from eroding to non-eroding behavior is API-specific and drug-load (DL)-dependent. This study systematically classifies the ASD release mechanisms and relates them to the phenomenon of the loss of release (LoR). The latter is thermodynamically explained and predicted via a modeled ternary phase diagram of API, polymer, and water, and is then used to describe the ASD/water interfacial layers (below and above the glass transition). To this end, the ternary phase behavior of the APIs, naproxen, and venetoclax with the polymer poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and water was modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The glass transition was modeled using the Gordon-Taylor equation. The DL-dependent LoR was found to be caused by API crystallization or liquid-liquid phase separation (LLPS) at the ASD/water interface. If crystallization occurs, it was found that API and polymer release was impeded above a threshold DL at which the APIs crystallized directly at the ASD interface. If LLPS occurs, an API-rich phase and a polymer-rich phase are formed. Above a threshold DL, the less mobile and hydrophobic API-rich phase accumulates at the interface which prevents API release. LLPS is further influenced by the composition and glass transition temperature of the evolving phases and was investigated at 37 °C and 50 °C regarding impact of temperature of. The modeling results and LoR predictions were experimentally validated by means of dissolution experiments, microscopy, Raman spectroscopy, and size exclusion chromatography. The experimental results were found to be in very good agreement with the predicted release mechanisms deduced from the phase diagrams. Thus, this thermodynamic modeling approach represents a powerful mechanistic tool that can be applied to classify and quantitatively predict the DL-dependent LoR release mechanism of PVPVA64-based ASDs in water.
Collapse
Affiliation(s)
- Stefanie Dohrn
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Samuel O Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Esther Bochmann
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Ekaterina Sobich
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andrea Wahl
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Bernd Liepold
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| |
Collapse
|
8
|
Kolev I, Ivanova N, Topouzova-Hristova T, Dimova T, Koseva P, Vasileva I, Ivanova S, Apostolov A, Alexieva G, Tzonev A, Strashilov V. Ammonio Methacrylate Copolymer (Type B)-Diltiazem Interactions in Solid Dispersions and Microsponge Drug-Delivery Systems. Polymers (Basel) 2022; 14:polym14102125. [PMID: 35632008 PMCID: PMC9144411 DOI: 10.3390/polym14102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
This paper presents a complex analytical study on the distribution, solubility, amorphization, and compatibility of diltiazem within the composition of Eudragit RS 100-based particles of microspongeous type. For this purpose, a methodology combining attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy with energy-dispersive X-ray microanalysis (SEM-EDX), and in vitro dissolution study is proposed. The correct interpretation of the FTIR and drug-dissolution results was guaranteed by the implementation of two contrasting reference models: physical drug–polymer mixtures and casting-obtained, molecularly dispersed drug–polymer composites (solid dispersions). The spectral behavior of the drug–polymer composites in the carbonyl frequency (νCO) region was used as a quality marker for the degree of their interaction/mutual solubility. A spectral-pattern similarity between the microsponge particles and the solid dispersions indicated the molecular-type dispersion of the former. The comparative drug-desorption study and the qualitative observations over the DSC and SEM-EDX results confirmed the successful synthesis of a homogeneous coamorphous microsponge-type formulation with excellent drug-loading capacity and “controlled” dissolution profile. Among them, the drug-delivery particles with 25% diltiazem content (M-25) were recognized as the most promising, with the highest population of drug molecules in the polymer bulk and the most suitable desorption profile. Furthermore, an economical and effective analytical algorithm was developed for the comprehensive physicochemical characterization of complex delivery systems of this kind.
Collapse
Affiliation(s)
- Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
- Correspondence: (I.K.); (N.I.)
| | - Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria
- Correspondence: (I.K.); (N.I.)
| | - Tanya Topouzova-Hristova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University “St. Kl. Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Tanya Dimova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Pavlina Koseva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Ivalina Vasileva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Sonya Ivanova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”–Varna, 84 “Tzar Osvoboditel” Blvd., 9000 Varna, Bulgaria; (T.D.); (P.K.); (I.V.); (S.I.)
| | - Anton Apostolov
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Gergana Alexieva
- Department of General Physics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Atanas Tzonev
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| | - Vesselin Strashilov
- Department of Condensed Matter Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kl. Ohridski”, 5 J. Bourchier Blvd., 1164 Sofia, Bulgaria; (A.T.); (V.S.)
| |
Collapse
|
9
|
Faiz Afzal MA, Lehmkemper K, Sobich E, Hughes TF, Giesen DJ, Zhang T, Krauter CM, Winget P, Degenhardt M, Kyeremateng SO, Browning AR, Shelley JC. Molecular-Level Examination of Amorphous Solid Dispersion Dissolution. Mol Pharm 2021; 18:3999-4014. [PMID: 34570503 DOI: 10.1021/acs.molpharmaceut.1c00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amorphous solid dispersions (ASDs) are commonly used to orally deliver small-molecule drugs that are poorly water-soluble. ASDs consist of drug molecules in the amorphous form which are dispersed in a hydrophilic polymer matrix. Producing a high-performance ASD is critical for effective drug delivery and depends on many factors such as solubility of the drug in the matrix and the rate of drug release in aqueous medium (dissolution), which is linked to bioperformance. Often, researchers perform a large number of design iterations to achieve this objective. A detailed molecular-level understanding of the mechanisms behind ASD dissolution behavior would aid in the screening, designing, and optimization of ASD formulations and would minimize the need for testing a wide variety of prototype formulations. Molecular dynamics and related types of simulations, which model the collective behavior of molecules in condensed phase systems, can provide unique insights into these mechanisms. To study the effectiveness of these simulation techniques in ASD formulation dissolution, we carried out dissipative particle dynamics simulations, which are particularly an efficient form of molecular dynamics calculations. We studied two stages of the dissolution process: the early-stage of the dissolution process, which focuses on the dissolution at the ASD/water interface, and the late-stage of the dissolution process, where significant drug release would have occurred and there would be a mixture of drug and polymer molecules in a predominantly aqueous environment. Experimentally, we used Fourier transform infrared spectroscopy to study the interactions between drugs, polymers, and water in the dry and wet states and the chromatographic technique to study the rate of drug and polymer release. Both experiments and simulations provided evidence of polymer microstructures and drug-polymer interactions as important factors for the dissolution behavior of the investigated ASDs, consistent with previous work by Pudlas et al. (Eur. J. Pharm. Sci. 2015, 67, 21-31). As experimental and simulation results are consistent and complementary, it is clear that there is significant potential for combined experimental and computational research for a detailed understanding of ASD formulations and, hence, formulation optimization.
Collapse
Affiliation(s)
- Mohammad Atif Faiz Afzal
- Materials Science, Schrödinger, LLC, Suite 1300, 101 SW Main Street, Portland, Oregon 97204, United States
| | - Kristin Lehmkemper
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Ekaterina Sobich
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Thomas F Hughes
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | - David J Giesen
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | - Teng Zhang
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | | | - Paul Winget
- Materials Science, Schrödinger, LLC, 120 West 45th St. 17th Floor, New York, New York 10036-4041, United States
| | - Matthias Degenhardt
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Samuel O Kyeremateng
- Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Andrea R Browning
- Materials Science, Schrödinger, LLC, Suite 1300, 101 SW Main Street, Portland, Oregon 97204, United States
| | - John C Shelley
- Materials Science, Schrödinger, LLC, Suite 1300, 101 SW Main Street, Portland, Oregon 97204, United States
| |
Collapse
|
10
|
Gueche YA, Sanchez-Ballester NM, Bataille B, Aubert A, Rossi JC, Soulairol I. Investigating the Potential Plasticizing Effect of Di-Carboxylic Acids for the Manufacturing of Solid Oral Forms with Copovidone and Ibuprofen by Selective Laser Sintering. Polymers (Basel) 2021; 13:polym13193282. [PMID: 34641098 PMCID: PMC8513101 DOI: 10.3390/polym13193282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
In selective laser sintering (SLS), the heating temperature is a critical parameter for printability but can also be deleterious for the stability of active ingredients. This work aims to explore the plasticizing effect of di-carboxylic acids on reducing the optimal heating temperature (OHT) of polymer powder during SLS. First, mixtures of copovidone and di-carboxylic acids (succinic, fumaric, maleic, malic and tartaric acids) as well as formulations with two forms of ibuprofen (acid and sodium salt) were prepared to sinter solid oral forms (SOFs), and their respective OHT was determined. Plasticization was further studied by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Following this, the printed SOFs were characterized (solid state, weight, hardness, disintegration time, drug content and release). It was found that all acids (except tartaric acid) reduced the OHT, with succinic acid being the most efficient. In the case of ibuprofen, only the acid form demonstrated a plasticizing effect. DSC and FTIR corroborated these observations showing a decrease in the glass transition temperature and the presence of interactions, respectively. Furthermore, the properties of the sintered SOFs were not affected by plasticization and the API was not degraded in all formulations. In conclusion, this study is a proof-of-concept that processability in SLS can improve with the use of di-carboxylic acids.
Collapse
Affiliation(s)
- Yanis Abdelhamid Gueche
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
| | - Noelia M. Sanchez-Ballester
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Bernard Bataille
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
| | - Adrien Aubert
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
| | | | - Ian Soulairol
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France; (Y.A.G.); (N.M.S.-B.); (B.B.); (A.A.)
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
- Correspondence:
| |
Collapse
|
11
|
Li M, Furey C, Skros J, Xu O, Rahman M, Azad M, Dave R, Bilgili E. Impact of Matrix Surface Area on Griseofulvin Release from Extrudates Prepared via Nanoextrusion. Pharmaceutics 2021; 13:pharmaceutics13071036. [PMID: 34371728 PMCID: PMC8308970 DOI: 10.3390/pharmaceutics13071036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to examine the impact of milling of extrudates prepared via nanoextrusion and the resulting matrix surface area of the particles on griseofulvin (GF, a model poorly soluble drug) release during in vitro dissolution. Wet-milled GF nanosuspensions containing a polymer (Sol: Soluplus®, Kol: Kolliphor® P407, or HPC: Hydroxypropyl cellulose) and sodium dodecyl sulfate were mixed with additional polymer and dried in an extruder. The extrudates with 2% and 10% GF loading were milled–sieved into three size fractions. XRPD–SEM results show that nanoextrusion produced GF nanocomposites with Kol/HPC and an amorphous solid dispersion (ASD) with Sol. For 8.9 mg GF dose (non-supersaturating condition), the dissolution rate parameter was higher for extrudates with higher external specific surface area and those with 10% drug loading. It exhibited a monotonic increase with surface area of the ASD, whereas its increase tended to saturate above ~30 × 10−3 m2/cm3 for the nanocomposites. In general, the nanocomposites released GF faster than the ASD due to greater wettability and faster erosion imparted by Kol/HPC than by Sol. For 100 mg GF dose, the ASD outperformed the nanocomposites due to supersaturation and only 10% GF ASD with 190 × 10−3 m2/cm3 surface area achieved immediate release (80% release within 30 min). Hence, this study suggests that ASD extrudates entail fine milling yielding > ~200 × 10−3 m2/cm3 for rapid drug release, whereas only a coarse milling yielding ~30 × 10−3 m2/cm3 may enable nanocomposites to release low-dose drugs rapidly.
Collapse
Affiliation(s)
- Meng Li
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Casey Furey
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Jeffrey Skros
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Olivia Xu
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
- Department of Organismic and Evolutionary Biology, Harvard College, Cambridge, MA 02138, USA;
| | - Mahbubur Rahman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Mohammad Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Rajesh Dave
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
- Correspondence: ; Tel.: +1-973-596-2998; Fax: +1-973-596-8436
| |
Collapse
|
12
|
López Mármol Á, Denninger A, Touzet A, Dauer K, Becker T, Pöstges F, Pellequer Y, Lamprecht A, Wagner KG. The relevance of supersaturation and solubilization in the gastrointestinal tract for oral bioavailability: An in vitro vs. in vivo approach. Int J Pharm 2021; 603:120648. [PMID: 33915180 DOI: 10.1016/j.ijpharm.2021.120648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023]
Abstract
The influence of supersaturation and solubilization on oral absorption was assessed independently from the dissolution process for the non-formulated model drugs celecoxib and telmisartan. In vitro, physicochemical characterization and biphasic dissolution were used to characterize the supersaturation and solubilization effects of three water soluble polymers (copovidone, methylcellulose and Soluplus®) on the drugs. While celecoxib precipitated in a crystalline form resulting in pronounced stabilization of supersaturation, telmisartan precipitated as a highly energetic amorphous form and the potential of the polymers to enhance its solubility was subsequently, limited. In vivo, for the crystalline precipitating celecoxib, supersaturation and solubilization increased its oral bioavailability up to 10-fold. On the contrary, the amorphous precipitating telmisartan did not benefit from the limited stabilization in terms of oral exposure. Amongst all investigated in vitro tests the biphasic dissolution test was the most predictive in relation to supersaturation. However, for the potential micellar solubilization and the respective impact in the aqueous/organic interface, prediction accuracy of the biphasic dissolution test was limited in combination with Soluplus®. Despite the hetergeneous micellar distribution in vitro and permeation in vivo, the biphasic approach could clearly show the supersaturation potential on bioavailability (BA) for celecoxib on the one hand and the inferiority of supersaturation on BA for telmisartan.
Collapse
Affiliation(s)
- Álvaro López Mármol
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Alexander Denninger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Antoine Touzet
- PEPITE EA4267, University of Bourgogne Franche-Comté, 19 Rue Ambroise Paré, 25030 Besançon Cedex, France
| | - Katharina Dauer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Tim Becker
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Yann Pellequer
- PEPITE EA4267, University of Bourgogne Franche-Comté, 19 Rue Ambroise Paré, 25030 Besançon Cedex, France
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany; PEPITE EA4267, University of Bourgogne Franche-Comté, 19 Rue Ambroise Paré, 25030 Besançon Cedex, France
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|
13
|
Li Z, Sun Y, Bar-Shalom D, Mu H, Larsen SW, Jensen H, Østergaard J. Towards functional characterization of excipients for oral solid dosage forms using UV-vis imaging. Liberation, release and dissolution. J Pharm Biomed Anal 2020; 194:113789. [PMID: 33298380 DOI: 10.1016/j.jpba.2020.113789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to investigate whole-dosage form UV-vis imaging as a potential tool for functional characterization of excipients used in solid oral dosage forms. To this end, tablets (average mass 260.0 mg, 224.5 mg and 222.1 mg) containing theophylline anhydrate (20 % w/w), 1% (w/w) magnesium stearate, and 79 % (w/w) of either microcrystalline cellulose (MCC, Avicel PH 101) or hydroxypropyl methylcellulose (HPMC, Methocel K15 M or K100 M) were prepared as model systems. Drug liberation from tablets was studied in 0.01 M HCl at 37 °C using a Sirius SDi2 equipped with a USP IV type flow cell comprising a UV-vis imaging detector operating at 255 nm and 520 nm. The effluent from the flow cell was passed through a downstream spectrophotometer, and UV-vis spectra in the wavelength range 200-800 nm were recorded every 2 min. The erosion and swelling behavior of the MCC tablets and HPMC K15 M and K100 M tablets were visualized in real time. The swelling of HPMC K15 M and K100 M containing tablets was assessed quantitatively as changes in tablet diameter measured at 520 nm, and was clearly distinguished from the swelling of the MCC tablets. Namely, an increment of 2.5 mm in diameter was determined for the HPMC tablets while the MCC tablets increased by 0.5-1 mm in diameter. Gel layers of variable thickness were observed only for the HPMC K15 M and K100 M tablets. In addition, a relatively high initial liberation rate of theophylline was found for the MCC tablets as compared to the HPMC tablets. UV-vis imaging revealed features of liberation not revealed by simply measuring drug concentration in the dissolution media or by visual assessment. It may be sufficiently sensitive to be further developed for functional characterization of excipients and provide insights into drug-excipient interactions likely to be useful in formulation development.
Collapse
Affiliation(s)
- Zhuoxuan Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Yu Sun
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark; Bioneer: Farma, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Susan Weng Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Henrik Jensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Jadhav P, Gokarna V, Deshpande V, Vavia P. Bioavailability Enhancement of Olmesartan Medoxomil Using Hot-Melt Extrusion: In-Silico, In-Vitro, and In-Vivo Evaluation. AAPS PharmSciTech 2020; 21:254. [PMID: 32888102 DOI: 10.1208/s12249-020-01780-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
Olmesartan medoxomil (OLM) an antihypertensive molecule with poor solubility and poor bioavailability (26% when taken orally) was selected as a model drug. Herein, rationale development of amorphous solid dispersion with hot-melt extrusion of poorly bioavailable OLM was carried out with the aid of quality by design (QbD), in-silico, in-vitro, and in-vivo evaluations. Polymer selection commenced with the selection of thermoplastic water-soluble polymers with the compatible processing temperature window as per the thermal behavior of OLM. Molecular dynamics (MD) simulations as well assisted in the selection of a carrier. Promising dissolution enhancement was observed with the help of Kollidon VA-64 (VA-64) as a carrier. Optimization of the formulation was executed using the QbD approach with design of experiment as a statistical optimization tool. Interactions between VA-64 and OLM on the atomic level were studied with the help of atomistic MD simulations. Characterization of the optimized extrudates were carried out with scanning electron microscopy, atomic force microscopy, differential scanning calorimetry, thermogravimetric analysis, Fourier transforms infrared spectroscopy, powder X-ray diffraction, in-vitro dissolution study, and in-vivo pharmacokinetic studies. Molecular-level mixing of OLM with VA-64 resulted into glass solution formation which rapidly dissolves (28 times in-vitro dissolution enhancement) in GI tract fluids and instantly gets absorbed into blood circulation. In-vivo pharmacokinetic studies performed in Sprague-Dawley rats reflected superior bioavailability (201.60%) with a significant increase in the Cmax with short Tmax through amorphization of OLM. The in-silico results were in agreement with the observed results of in-vitro dissolution studies and in-vivo pharmacokinetic study.
Collapse
|
15
|
Song Y, Cong Y, Wang B, Zhang N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin Drug Deliv 2020; 17:551-571. [PMID: 32116058 DOI: 10.1080/17425247.2020.1737671] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Various pharmaceutical preparations are widely used for clinical treatment. Elucidation of the mechanisms of drug release and evaluation of drug efficacy in biological samples are important in drug design and drug quality control.Areas covered: This review classifies recent applications of Fourier transform infrared (FTIR) spectroscopy in the field of medicine to comprehend drug release and diffusion. Drug release is affected by many factors of preparations, such as drug delivery system and microstructure polymorphism. The applications of FTIR imaging and nano-FTIR technique in biological samples lay a foundation for studying drug mechanism in vivo.Expert opinion: FTIR spectroscopy meets the research needs on preparations to understand the processes and mechanisms underlying drug release. The combination of attenuated total reflectance-FTIR imaging and nano-FTIR accompanied by chemometrics is a potent tool to overcome the deficiency of conventional infrared detection. FTIR shows an enormous potential in drug characterization, drug quality control, and bio-sample detection.
Collapse
Affiliation(s)
- Yijie Song
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Simões MF, Pinto RM, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today 2019; 24:1749-1768. [DOI: 10.1016/j.drudis.2019.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 05/17/2019] [Indexed: 01/30/2023]
|
17
|
Effects of Molecular Interactions on Miscibility and Mobility of Ibuprofen in Amorphous Solid Dispersions With Various Polymers. J Pharm Sci 2019; 108:178-186. [DOI: 10.1016/j.xphs.2018.10.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
|
18
|
Censi R, Gigliobianco MR, Casadidio C, Di Martino P. Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics 2018; 10:E89. [PMID: 29997332 PMCID: PMC6160992 DOI: 10.3390/pharmaceutics10030089] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hot-melt extrusion (HME) is a well-accepted and extensively studied method for preparing numerous types of drug delivery systems and dosage forms. It offers several advantages: no solvents are required, it is easy to scale up and employ on the industrial level, and, in particular, it offers the possibility of improving drug bioavailability. HME involves the mixing of a drug with one or more excipients, in general polymers and even plasticizers, which can melt, often forming a solid dispersion of the drug in the polymer. The molten mass is extruded and cooled, giving rise to a solid material with designed properties. This process, which can be realized using different kinds of special equipment, may involve modifications in the drug physicochemical properties, such as chemical, thermal and mechanical characteristics thus affecting the drug physicochemical stability and bioavailability. During process optimization, the evaluation of the drug solid state and stability is thus of paramount importance to guarantee stable drug properties for the duration of the drug product shelf life. This manuscript reviews the most important physicochemical factors that should be investigated while designing and optimizing a hot melt extrusion process, and by extension, during the different pre-formulation, formulation and process, and post-formulation phases. It offers a comprehensive evaluation of the chemical and thermal stability of extrudates, the solid physical state of extrudates, possible drug-polymer interactions, the miscibility/solubility of the drug-polymer system, the rheological properties of extrudates, the physicomechanical properties of films produced by hot melt extrusion, and drug particle dissolution from extrudates. It draws upon the last ten years of research, extending inquiry as broadly as possible.
Collapse
Affiliation(s)
- Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| | | | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| |
Collapse
|
19
|
Wang S, Liu C, Chen Y, Zhang Z, Zhu A, Qian F. A high-sensitivity HPLC-ELSD method for HPMC-AS quantification and its application in elucidating the release mechanism of HPMC-AS based amorphous solid dispersions. Eur J Pharm Sci 2018; 122:303-310. [PMID: 30006181 DOI: 10.1016/j.ejps.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMC-AS) is one of the most widely used polymers used in amorphous solid dispersions (ASD) for solubility and bioavailability enhancement of poorly water-soluble drugs. Once released from ASDs, HPMC-AS was often found to be highly effective in maintaining drug supersaturation, and this capability is dependent on the concentration and substitution types of this pH-dependent polymer. Therefore, accurate quantification of different grades of HPMC-AS allows us to better understand the release and supersaturation mechanisms of HPMC-AS based ASDs. Since previously reported analytical methods were unable to quantify HPMC-AS in a complex medium with enough sensitivity, we hereby developed a high-sensitivity HPLC-ELSD (evaporative light scattering detector) method with satisfactory specificity, linearity, accuracy and precision, to quantify HPMC-AS down to 20 μg/mL in dissolution media, with the presence of various commonly used pharmaceutical excipients. With the assistance of this method, we compared the intrinsic dissolution rates (IDR) of both the drug and the polymer of posaconazole ASDs based on different types of HPMC-AS. We observed that: 1) For ASDs that were spray dried and uniformly mixed, drug and polymer released simultaneously into the medium with practically identical IDRs slower than the IDR of pure HPMC-AS; 2) For ASDs that were heterogeneously mixed, IDRs of the drug and polymer were significantly slower or faster than the IDRs of the drug and polymer of the uniform ASDs, respectively. In summary, the high sensitivity HPLC-ELSD method established here can be readily applied to quantify HPMC-AS in various dissolution media, thus helps to reveal the release kinetics and mechanisms of different HPMC-AS based ASDs.
Collapse
Affiliation(s)
- Shan Wang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Chengyu Liu
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Yuejie Chen
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Zhen Zhang
- Pharmaceutical Development and Manufacture Science, Janssen Research & Development, Johnson & Johnson, Shanghai, China
| | - Alan Zhu
- Pharmaceutical Development and Manufacture Science, Janssen Research & Development, Johnson & Johnson, Shanghai, China.
| | - Feng Qian
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Ewing AV, Kazarian SG. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:10-29. [PMID: 29290567 DOI: 10.1016/j.saa.2017.12.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.
Collapse
Affiliation(s)
- Andrew V Ewing
- Imperial College London, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sergei G Kazarian
- Imperial College London, Department of Chemical Engineering, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
21
|
Theil F, Milsmann J, Kyeremateng SO, Anantharaman S, Rosenberg J, van Lishaut H. Extraordinary Long-Term-Stability in Kinetically Stabilized Amorphous Solid Dispersions of Fenofibrate. Mol Pharm 2017; 14:4636-4647. [DOI: 10.1021/acs.molpharmaceut.7b00735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Frank Theil
- AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | | | | | | | - Jörg Rosenberg
- AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | | |
Collapse
|
22
|
Comparison of the properties of implantable matrices prepared from degradable and non-degradable polymers for bisphosphonate delivery. Int J Pharm 2017; 533:364-372. [DOI: 10.1016/j.ijpharm.2017.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/06/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
|
23
|
|
24
|
Li M, Ioannidis N, Gogos C, Bilgili E. A comparative assessment of nanocomposites vs. amorphous solid dispersions prepared via nanoextrusion for drug dissolution enhancement. Eur J Pharm Biopharm 2017; 119:68-80. [DOI: 10.1016/j.ejpb.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022]
|
25
|
Hitzer P, Bäuerle T, Drieschner T, Ostertag E, Paulsen K, van Lishaut H, Lorenz G, Rebner K. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal Bioanal Chem 2017; 409:4321-4333. [PMID: 28343348 DOI: 10.1007/s00216-017-0292-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
Abstract
Newly developed active pharmaceutical ingredients (APIs) are often poorly soluble in water. As a result the bioavailability of the API in the human body is reduced. One approach to overcome this restriction is the formulation of amorphous solid dispersions (ASDs), e.g., by hot-melt extrusion (HME). Thus, the poorly soluble crystalline form of the API is transferred into a more soluble amorphous form. To reach this aim in HME, the APIs are embedded in a polymer matrix. The resulting amorphous solid dispersions may contain small amounts of residual crystallinity and have the tendency to recrystallize. For the controlled release of the API in the final drug product the amount of crystallinity has to be known. This review assesses the available analytical methods that have been recently used for the characterization of ASDs and the quantification of crystalline API content. Well-established techniques like near- and mid-infrared spectroscopy (NIR and MIR, respectively), Raman spectroscopy, and emerging ones like UV/VIS, terahertz, and ultrasonic spectroscopy are considered in detail. Furthermore, their advantages and limitations are discussed with regard to general practical applicability as process analytical technology (PAT) tools in industrial manufacturing. The review focuses on spectroscopic methods which have been proven as most suitable for in-line and on-line process analytics. Further aspects are spectroscopic techniques that have been or could be integrated into an extruder.
Collapse
Affiliation(s)
- Patrick Hitzer
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Tim Bäuerle
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Tobias Drieschner
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Edwin Ostertag
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Katharina Paulsen
- AbbVie Deutschland GmbH & Co.KG, Knollstr. 50, 67061, Ludwigshafen, Germany
| | - Holger van Lishaut
- AbbVie Deutschland GmbH & Co.KG, Knollstr. 50, 67061, Ludwigshafen, Germany
| | - Günter Lorenz
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Karsten Rebner
- Process Analysis and Technology (PA&T), Faculty Applied Chemistry, Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.
| |
Collapse
|
26
|
Hifumi H, Ewing AV, Kazarian SG. ATR-FTIR spectroscopic imaging to study the drying and dissolution of pharmaceutical polymer-based films. Int J Pharm 2016; 515:57-68. [DOI: 10.1016/j.ijpharm.2016.09.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
27
|
Multifractal Characterization of Pharmaceutical Hot-Melt Extrudates. Pharm Res 2016; 34:321-332. [DOI: 10.1007/s11095-016-2064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
|
28
|
Sun Y, Østergaard J. Application of UV Imaging in Formulation Development. Pharm Res 2016; 34:929-940. [PMID: 27766463 DOI: 10.1007/s11095-016-2047-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/03/2016] [Indexed: 12/18/2022]
Abstract
Efficient drug delivery is dependent on the drug substance dissolving in the body fluids, being released from dosage forms and transported to the site of action. A fundamental understanding of the interplay between the physicochemical properties of the active compound and pharmaceutical excipients defining formulation behavior after exposure to the aqueous environments and pharmaceutical performance is critical in pharmaceutical development, manufacturing and quality control of drugs. UV imaging has been explored as a tool for qualitative and quantitative characterization of drug dissolution and release with the characteristic feature of providing real-time visualization of the solution phase drug transport in the vicinity of the formulation. Events occurring during drug dissolution and release, such as polymer swelling, drug precipitation/recrystallization, or solvent-mediated phase transitions related to the structural properties of the drug substance or formulation can be monitored. UV imaging is a non-intrusive and simple-to-operate analytical technique which holds potential for providing a mechanistic foundation for formulation development. This review aims to cover applications of UV imaging in the early and late phase pharmaceutical development with a special focus on the relation between structural properties and performance. Potential areas of future advancement and application are also discussed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
29
|
Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets. Ther Deliv 2016; 7:553-72. [DOI: 10.4155/tde-2016-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
Collapse
|
30
|
Agrawal A, Dudhedia M, Deng W, Shepard K, Zhong L, Povilaitis E, Zimny E. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach. AAPS PharmSciTech 2016; 17:214-32. [PMID: 26757898 DOI: 10.1208/s12249-015-0472-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/17/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of the study was to identify the extragranular component requirements (level and type of excipients) to develop an immediate release tablet of solid dispersions prepared by hot melt extrusion (HME) process using commonly used HME polymers. Solid dispersions of compound X were prepared using polyvinyl pyrrolidone co-vinyl acetate 64 (PVP VA64), Soluplus, and hypromellose acetate succinate (HPMCAS-LF) polymers in 1:2 ratio by HME through 18 mm extruder. A mixture design was employed to study effect of type of polymer, filler (microcrystalline cellulose (MCC), lactose, and dicalcium phosphate anhydrous (DCPA)), and disintegrant (Crospovidone, croscarmellose sodium, and sodium starch glycolate (SSG)) as well as level of extrudates, filler, and disintegrant on tablet properties such as disintegration time (DT), tensile strength (TS), compactibility, and dissolution. Higher extrudate level resulted in longer DT and lower TS so 60-70% was the maximum amount of acceptable extrudate level in tablets. Fast disintegration was achieved with HPMCAS-containing tablets, whereas Soluplus- and PVP VA64-containing tablets had higher TS. Crospovidone and croscarmellose sodium were more suitable disintegrant than SSG to achieve short DT, and MCC was a suitable filler to prepare tablets with acceptable TS for each studied HME polymer. The influence of extragranular components on dissolution from tablets should be carefully evaluated while finalizing tablet composition, as it varies for each HME polymer. The developed statistical models identified suitable level of fillers and disintegrants for each studied HME polymer to achieve tablets with rapid DT (<15 min) and acceptable TS (≥1 MPa at 10-15% tablet porosity), and their predictivity was confirmed by conducting internal and external validation studies.
Collapse
|