1
|
Bertova A, Kontar S, Ksinanova M, Vergara AY, Sulova Z, Breier A, Imrichova D. Sulforaphane and Benzyl Isothiocyanate Suppress Cell Proliferation and Trigger Cell Cycle Arrest, Autophagy, and Apoptosis in Human AML Cell Line. Int J Mol Sci 2024; 25:13511. [PMID: 39769273 PMCID: PMC11677715 DOI: 10.3390/ijms252413511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Isothiocyanates (ITCs) are naturally occurring sulfur-containing compounds with diverse biological effects. This study investigated the effects of sulforaphane (SFN, an aliphatic ITC) and benzyl isothiocyanate (BITC, an aromatic ITC) on human acute myeloid leukemia SKM-1 cells, focusing on cell proliferation, cell death, and drug resistance. Both drug-sensitive SKM-1 cells and their drug-resistant SKM/VCR variant, which overexpresses the drug transporter P-glycoprotein, were used. SFN and BITC reduced cell viability in a dose-dependent manner, with BITC showing greater potency. IC50 values ranged from 7.0-8.0 µM for SFN and 4.0-5.0 µM for BITC in both cell types, with only slight differences between the variants. Both ITCs induced autophagy as evidenced by increased LC3-II production and caused a significant increase in the sub-G0/G1 cell population, especially with BITC. Apoptosis was more pronounced after BITC treatment, whereas SFN had a weaker effect. These results suggest that autophagy may act as a defense mechanism in response to ITC-induced apoptosis in human AML cells.
Collapse
Affiliation(s)
- Anna Bertova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
| | - Szilvia Kontar
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
| | - Martina Ksinanova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
| | - Alberto Yoldi Vergara
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 840 05 Bratislava, Slovakia; (A.B.); (S.K.); (M.K.); (A.Y.V.); (Z.S.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
2
|
Cheng P, Chen X, Dalton R, Calescibetta A, So T, Gilvary D, Ward G, Smith V, Eckard S, Fox JA, Guenot J, Markowitz J, Cleveland JL, Wright KL, List AF, Wei S, Eksioglu EA. Immunodepletion of MDSC by AMV564, a novel bivalent, bispecific CD33/CD3 T cell engager, ex vivo in MDS and melanoma. Mol Ther 2022; 30:2315-2326. [PMID: 35150889 PMCID: PMC9171150 DOI: 10.1016/j.ymthe.2022.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022] Open
Abstract
We have reported previously that CD33hi myeloid-derived suppressor cells (MDSCs) play a direct role in the pathogenesis of myelodysplastic syndromes (MDSs) and that their sustained activation contributes to hematopoietic and immune impairment, including modulation of PD1/PDL1. MDSCs can also limit the clinical activity of immune checkpoint inhibition in solid malignancies. We hypothesized that depletion of MDSCs may ameliorate resistance to checkpoint inhibitors and, hence, targeted them with AMV564 combined with anti-PD1 in MDS bone marrow (BM) mononuclear cells (MNCs) enhanced activation of cytotoxic T cells. AMV564 was active in vivo in a leukemia xenograft model when co-administered with healthy donor peripheral blood MNCs (PBMCs). Our findings provide a strong rationale for clinical investigation of AMV564 as a single agent or in combination with an anti-PD1 antibody and in particular for treatment of cancers resistant to checkpoint inhibitors.
Collapse
Affiliation(s)
- Pingyan Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Robert Dalton
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alexandra Calescibetta
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tina So
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Danielle Gilvary
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Grace Ward
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Victoria Smith
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Sterling Eckard
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Judith A Fox
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Jeanmarie Guenot
- Amphivena Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Joseph Markowitz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alan F List
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Precision BioSciences, Durham, NC 27701, USA
| | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Erika A Eksioglu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Development of Multidrug Resistance in Acute Myeloid Leukemia Is Associated with Alterations of the LPHN1/GAL-9/TIM-3 Signaling Pathway. Cancers (Basel) 2021; 13:cancers13143629. [PMID: 34298843 PMCID: PMC8304048 DOI: 10.3390/cancers13143629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
P-glycoprotein (known as ABCB1 transporter) expression in myeloid blasts of acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) leads to the commonly observed multidrug resistance. Overexpression of latrophilin-1 was detected in leukemic cells from AML patients. In a previous study, we showed that ABCB1 overexpression is associated with decreased latrophilin-1 expression in MOLM-13/VCR and SKM-1/VCR AML cell variants derived from MOLM-13 and SKM-1 cells by vincristine selection/adaptation. In the present study, we found that if ABCB1 overexpression occurs in myeloid blasts of newly diagnosed MDS patients, latrophilin-1 expression is attenuated. Latrophilin-1 may initiate TIM-3- and galectin-9-mediated immune escape. We demonstrated changes in the expression of both proteins by comparing ABCB1-positive cell variants (MOLM-13/VCR, SKM-1/VCR) with their ABCB1-negative counterparts. Galectin-9 was present in our cell lines in eight protein isoforms for which we identified the respective transcription variants resulting from alternative splicing, and we verified their structure by sequencing. The isoform profile of galectin-9 was different between ABCB1-positive and ABCB1-negative cell variants. The interaction partner of galectin-9 is CD44, and its expression was altered in the ABCB1-positive variants MOLM-13/VCR and SKM-1/VCR compared to their ABCB1-negative counterparts.
Collapse
|
4
|
Janotka Ľ, Messingerová L, Šimoničová K, Kavcová H, Elefantová K, Sulová Z, Breier A. Changes in Apoptotic Pathways in MOLM-13 Cell Lines after Induction of Resistance to Hypomethylating Agents. Int J Mol Sci 2021; 22:ijms22042076. [PMID: 33669837 PMCID: PMC7923013 DOI: 10.3390/ijms22042076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
We established the following two variants of the MOLM-13 human acute myeloid leukemia (AML) cell line: (i) MOLM-13/DAC cells are resistant to 5-aza-2′-deoxycytidine (DAC), and (ii) MOLM-13/AZA are resistant to 5-azacytidine (AZA). Both cell variants were obtained through a six-month selection/adaptation procedure with a stepwise increase in the concentration of either DAC or AZA. MOLM-13/DAC cells are resistant to DAC, and MOLM-13/AZA cells are resistant to AZA (approximately 50-fold and 20-fold, respectively), but cross-resistance of MOLM-13/DAC to AZA and of MOLM-13/AZA to DAC was not detected. By measuring the cell retention of fluorescein-linked annexin V and propidium iodide, we showed an apoptotic mode of death for MOLM-13 cells after treatment with either DAC or AZA, for MOLM-13/DAC cells after treatment with AZA, and for MOLM-13/AZA cells after treatment with DAC. When cells progressed to apoptosis, via JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide) assay, we detected a reduction in the mitochondrial membrane potential. Furthermore, we characterized promoter methylation levels for some genes encoding proteins regulating apoptosis and the relation of this methylation to the expression of the respective genes. In addition, we focused on determining the expression levels and activity of intrinsic and extrinsic apoptosis pathway proteins.
Collapse
Affiliation(s)
- Ľuboš Janotka
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Lucia Messingerová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| | - Kristína Šimoničová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Helena Kavcová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Katarína Elefantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| |
Collapse
|
5
|
Amerigos Daddy J.C. K, Chen M, Raza F, Xiao Y, Su Z, Ping Q. Co-Encapsulation of Mitoxantrone and β-Elemene in Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Leukemia. Pharmaceutics 2020; 12:pharmaceutics12020191. [PMID: 32102214 PMCID: PMC7076650 DOI: 10.3390/pharmaceutics12020191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Multidrug resistance (MDR) due to P-glycoprotein (P-gp) overexpression is a major obstacle to successful leukemia chemotherapy. The combination of anticancer chemotherapy with a chemosensitizer of P-gp inhibitor is promising to overcome MDR, generate synergistic effects, and maximize the treatment effect. Herein, we co-encapsulated a chemotherapeutic drug of mitoxantrone (MTO) and a P-gp inhibitor of β-elemene (βE) in solid lipid nanoparticles (MTO/βE-SLNs) for reversing MDR in leukemia. The MTO/βE-SLNs with about 120 nm particle size possessed good colloidal stability and sustained release behavior. For the cellular uptake study, doxorubicin (DOX) was used as a fluorescence probe to construct SLNs. The results revealed that MTO/βE-SLNs could be effectively internalized by both K562/DOX and K562 cells through the pathway of caveolate-mediated endocytosis. Under the optimized combination ratio of MTO and βE, the in vitro cytotoxicity study indicated that MTO/βE-SLNs showed a better antitumor efficacy in both K562/DOX and K562 cells than other MTO formulations. The enhanced cytotoxicity of MTO/βE-SLNs was due to the increased cellular uptake and blockage of intracellular ATP production and P-gp efflux by βE. More importantly, the in vivo studies revealed that MTO/βE-SLNs could significantly prolong the circulation time and increase plasma half-life of both MTO and βE, accumulate into tumor and exhibit a much higher anti-leukemia effect with MDR than other MTO formulations. These findings suggest MTO/βE-SLNs as a potential combined therapeutic strategy for overcoming MDR in leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Zhigui Su
- Correspondence: (Z.S.); (Q.P.); Tel.: +86-25-83271092 (Q.P.)
| | - Qineng Ping
- Correspondence: (Z.S.); (Q.P.); Tel.: +86-25-83271092 (Q.P.)
| |
Collapse
|
6
|
Boutin L, Arnautou P, Trignol A, Ségot A, Farge T, Desterke C, Soave S, Clay D, Raffoux E, Sarry JE, Malfuson JV, Lataillade JJ, Le Bousse-Kerdilès MC, Anginot A. Mesenchymal stromal cells confer chemoresistance to myeloid leukemia blasts through Side Population functionality and ABC transporter activation. Haematologica 2019; 105:987-9998. [PMID: 31289201 PMCID: PMC7109715 DOI: 10.3324/haematol.2018.214379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Targeting chemoresistant malignant cells is one of the current major challenges in oncology. Therefore, it is mandatory to refine the characteristics of these cells to monitor their survival and develop adapted therapies. This is of particular interest in acute myeloid leukemia (AML), for which the 5-year survival rate only reaches 30%, regardless of the prognosis. The role of the microenvironment is increasingly reported to be a key regulator for blast survival. In this context, we demonstrate that contact with mesenchymal stromal cells promotes a better survival of blasts in culture in the presence of anthracycline through the activation of ABC transporters. Stroma-dependent ABC transporter activation leads to the induction of a Side Population (SP) phenotype in a subpopulation of primary leukemia blasts through alpha (α)4 engagement. The stroma-promoting effect is reversible and is observed with stromal cells isolated from either healthy donors or leukemia patients. Blasts expressing an SP phenotype are mostly quiescent and are chemoresistant in vitro and in vivo in patient-derived xenograft mouse models. At the transcriptomic level, blasts from the SP are specifically enriched in the drug metabolism program. This detoxification signature engaged in contact with mesenchymal stromal cells represents promising ways to target stroma-induced chemoresistance of AML cells.
Collapse
Affiliation(s)
- Laetitia Boutin
- CTSA, IRBA, Clamart.,Inserm UMR-S-MD1197, Paul Brousse Hospital, Paris 11 University, Villejuif
| | | | | | | | - Thomas Farge
- Inserm U1037, Cancer Research Center of Toulouse, University of Toulouse, Toulouse
| | | | - Sabrina Soave
- Inserm UMR-S-MD1197, Paul Brousse Hospital, Paris 11 University, Villejuif
| | - Denis Clay
- Inserm UMS33, Paul Brousse Hospital, Paris 11 University, Villejuif
| | - Emmanuel Raffoux
- Adult Hematology Department, Saint Louis Hospital, Paris, France
| | - Jean-Emmanuel Sarry
- Inserm U1037, Cancer Research Center of Toulouse, University of Toulouse, Toulouse
| | - Jean-Valère Malfuson
- Inserm UMR-S-MD1197, Paul Brousse Hospital, Paris 11 University, Villejuif.,Hematology Department, HIA Percy, Clamart
| | - Jean-Jacques Lataillade
- CTSA, IRBA, Clamart.,Inserm UMR-S-MD1197, Paul Brousse Hospital, Paris 11 University, Villejuif
| | | | - Adrienne Anginot
- Inserm UMR-S-MD1197, Paul Brousse Hospital, Paris 11 University, Villejuif
| |
Collapse
|
7
|
Abstract
Acute myeloid leukemia (AML) is a kind of malignant hematopoietic system disease characterized by abnormal proliferation, poor cell differentiation, and infiltration of bone marrow, peripheral blood, or other tissues. To date, the first-line treatment of AML is still based on daunorubicin and cytosine arabinoside or idarubicin and cytosine arabinoside regimen. However, the complete remission rate of AML is still not optimistic, especially in elderly patients, and the recurrence rate after complete remission is still high. The resistance of leukemia cells to chemotherapy drugs becomes the main obstacle in the treatment of AML. At present, the research on the mechanisms of drug resistance in AML is very active. This article will elaborate on the main mechanisms of drug resistance currently being studied, including drug resistance-related proteins and enzymes, gene alterations, micro RNAs, and signal pathways.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Yan Gu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| |
Collapse
|
8
|
A single-cell micro-trench platform for automatic monitoring of cell division and apoptosis after chemotherapeutic drug administration. Sci Rep 2018; 8:18042. [PMID: 30575776 PMCID: PMC6303304 DOI: 10.1038/s41598-018-36508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023] Open
Abstract
Cells vary in their dynamic response to external stimuli, due to stochastic fluctuations and non-uniform progression through the cell cycle. Hence, single-cell studies are required to reveal the range of heterogeneity in their responses to defined perturbations, which provides detailed insight into signaling processes. Here, we present a time-lapse study using arrays of micro-trenches to monitor the timing of cell division and apoptosis in non-adherent cells at the single-cell level. By employing automated cell tracking and division detection, we precisely determine cell cycle duration and sister-cell correlations for hundreds of individual cells in parallel. As a model application we study the response of leukemia cells to the chemostatic drug vincristine as a function of cell cycle phase. The time-to-death after drug addition is found to depend both on drug concentration and cell cycle phase. The resulting timing and dose-response distributions were reproduced in control experiments using synchronized cell populations. Interestingly, in non-synchronized cells, the time-to-death intervals for sister cells appear to be correlated. Our study demonstrates the practical benefits of micro-trench arrays as a platform for high-throughput, single-cell time-lapse studies on cell cycle dependence, correlations and cell fate decisions in general.
Collapse
|
9
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
10
|
Reversal effects of local anesthetics on P-glycoprotein-mediated cancer multidrug resistance. Anticancer Drugs 2017; 28:243-249. [DOI: 10.1097/cad.0000000000000455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
The expression of P-glycoprotein in leukemia cells is associated with the upregulated expression of nestin, a class 6 filament protein. Leuk Res 2016; 48:32-9. [PMID: 27479651 DOI: 10.1016/j.leukres.2016.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/06/2016] [Accepted: 05/26/2016] [Indexed: 11/20/2022]
Abstract
Multidrug resistance (MDR) is a serious obstacle to the effective chemotherapeutic treatment of leukemia. Expression of plasma membrane P-glycoprotein (P-gp), a transporter involved in drug efflux, is the most frequently observed molecular causality of MDR. We observed the coexpression of P-gp and the filament protein nestin in the acute myeloid leukemia (AML) cell lines SKM-1 and MOLM-13 following the induction of P-gp expression using vincristine. Nestin is considered a marker of neural stem cells and neural progenitor cells. The aim of this study was to determine whether there is causal relationship between the expression of P-glycoprotein and the expression of nestin in both of these AML cell lines. The expression of P-gp was induced in SKM-1 cells by selective pressure using vincristine (VCR), mitoxantrone (MTX), azacytidine (AzaC) and lenalidomide (LEN). Whereas the selective pressure of VCR, MTX and AzaC also induced P-gp expression in MOLM-13 cells, LEN was found to be ineffective in this regard. In all cases in which P-gp expression was induced in SKM-1 and MOLM-13 cells, its expression was associated with the induction of nestin mRNA expression and the presence of a 200-220kDa nestin-immunoreactive protein band in western blots. Silencing P-gp expression using s10418 siRNA (known as the P-gp silencer) was associated with the downregulation of the nestin transcript level, demonstrated using RT-PCR. Nestin mRNA was also observed in two P-gp-positive variants of L1210 cells that were obtained either by selection with VCR or by transfection with a retrovirus encoding human P-gp. Detectable levels of nestin transcripts were not observed in P-gp-negative parental L1210 cells. Taken together, these results indicated that the induction of P-gp expression is causally associated with the expression of nestin in leukemia cells.
Collapse
|
12
|
Messingerova L, Imrichova D, Kavcova H, Seres M, Sulova Z, Breier A. A decrease in cellular microRNA-27a content is involved in azacytidine-induced P-glycoprotein expression in SKM-1 cells. Toxicol In Vitro 2016; 36:81-88. [PMID: 27396688 DOI: 10.1016/j.tiv.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
We established an azacytidine (AzaC)-resistant human acute myeloid leukemia (AML) cell line (SKM-1/AzaC) by culturing SKM-1 cells in the presence of increasing amounts of AzaC for six months. Because AzaC is not a substrate of P-glycoprotein (a product of the ABCB1 gene; ABCB1), ABCB1 was not responsible for AzaC resistance; nevertheless, it was notably upregulated in SKM-1/AzaC cells. In addition, the transcription of the Nfkb1 gene, which encodes a member of the canonical NF-kappaB regulatory pathway, was downregulated, and the transcription of the Nfkb2 gene, which encodes a member of the non-canonical NF-kappaB regulatory pathway, was upregulated in SKM-1/AzaC cells. Here, we investigate whether miRNA-27a and miRNA-138 (both of which are known to be regulators of ABCB1 expression) are involved in the regulation of ABCB1 expression in SKM-1/AzaC cells. We observed decreased levels of miRNA-27a but of not miRNA-138 in SKM-1/AzaC cells compared with SKM-1 cells. The transfection of SKM-1/AzaC cells with a miRNA-27a mimic induced the downregulation of the ABCB1 mRNA. This was associated with an increase in Nfkb1 and a decrease in Nfkb2 transcript levels in SKM-1/AzaC cells. Taken together, these data indicate that the downregulation of miRNA-27a is involved in the upregulation of ABCB1 expression in SKM-1/AzaC cells, and this effect is associated with a switch between the canonical and non-canonical NF-kappaB pathways.
Collapse
Affiliation(s)
- Lucia Messingerova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Denisa Imrichova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Helena Kavcova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Mario Seres
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|