1
|
Delmas C, Nguyen VH, Vachon JJ, Chapron D, Longo E, Mancini L, Michelet A, Meuri M, Faivre V. Prilling of crystallizable water-in-oil emulsions: Towards co-encapsulation of hydrophilic and lipophilic active ingredients within lipid microparticles. Int J Pharm 2025; 671:125215. [PMID: 39809347 DOI: 10.1016/j.ijpharm.2025.125215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices. Urea (highly water-soluble) and Erythromycin (poorly water-soluble) were selected as model compounds, solubilized in the aqueous and lipid phases, respectively. The first phase of the study evaluated lipid excipients for their suitability in prilling, ensuring microparticle consistency in shape, size, and stability. The second phase focused on characterizing microparticles notably in terms of structural organization and integrity. Results demonstrated successful encapsulation of both model compounds, with high efficiency, by omitting an additional emulsification step. Despite concerns over water evaporation during processing, microparticles remained stable for up to 14 months when stored at room temperature in a hermetically sealed container. This work highlights the potential of fusion prilling for multiparticulate drug delivery systems, even for formulating APIs with different solubility profiles. Future research should focus on optimizing the process for broader API incorporation.
Collapse
Affiliation(s)
- Claire Delmas
- Institut Galien Paris-Saclay, CNRS UMR8612, 17 avenue des Sciences, 91400 Orsay, France
| | - Van Hung Nguyen
- Institut Galien Paris-Saclay, CNRS UMR8612, 17 avenue des Sciences, 91400 Orsay, France
| | - Jean-Jacques Vachon
- Institut Galien Paris-Saclay, CNRS UMR8612, 17 avenue des Sciences, 91400 Orsay, France
| | - David Chapron
- Institut Galien Paris-Saclay, CNRS UMR8612, 17 avenue des Sciences, 91400 Orsay, France
| | - Elena Longo
- Elettra - Synchrotron Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Lucia Mancini
- Slovenian National Building and Civil Engineering Institute (ZAG), Dmičheva ulica 12, 1000 Ljubljana, Slovenia
| | - Alexandre Michelet
- PerkinElmer Scientific France, Parc des Algorithmes, 91190 Saint-Aubin, France
| | - Marco Meuri
- BÜCHI Labortechnik AG, Meierseggstrasse 40, 9230 Flawil, Switzerland
| | - Vincent Faivre
- Institut Galien Paris-Saclay, CNRS UMR8612, 17 avenue des Sciences, 91400 Orsay, France.
| |
Collapse
|
2
|
Fauteux-Lefebvre C, Lavoie FB, Hudon S, Gosselin R. Hierarchical Multivariate Curve Resolution Coupled to Raman Imaging for Fast Characterization of Pharmaceutical Tablets. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Sustained Release Biocompatible Ocular Insert Using Hot Melt Extrusion Technology: Fabrication and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Heat Treatment Induced Specified Aggregation Morphology of Metoprolol Tartrate in Poly(ε-caprolactone) Matrix and the Drug Release Variation. Polymers (Basel) 2021; 13:polym13183076. [PMID: 34577979 PMCID: PMC8471319 DOI: 10.3390/polym13183076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Hot-melt blending has been widely used in the pharmaceutical industry to produce drug delivery systems, however, realizing the controlled drug release behavior of a hot-melt blended medicament it is still a tough challenge. In this study, we developed a simple and effective heat treatment method to adjust the drug release behavior, without the addition of any release modifiers. Thin metoprolol tartrate (MPT)/poly(ε-caprolactone) (PCL) tablets were prepared through hot-melt processing, and different morphologies of MPT were obtained by altering processing temperatures and the following heat treatment. MPT particles with different particle sizes were obtained under different processing temperatures, and fibrous crystals of MPT were fabricated during the following heat treatment. Different morphological structures of MPT adjusted the drug diffusion channel when immersed in phosphate-buffered saline (PBS), and various drug release behaviors were approached. After being immersed for 24 h, 7% of the MPT was released from the blend processed at 130 °C, while more than 95% of the MPT were released after the following heat treatment of the same sample. Thus, flexible drug release behaviors were achieved using this simple and effective processing manufacture, which is demonstrated to be of profound importance for biomedical applications.
Collapse
|
5
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
6
|
Chauhan G, Shaik AA, Kulkarni NS, Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov Today 2020; 25:S1359-6446(20)30330-5. [PMID: 32835807 DOI: 10.1016/j.drudis.2020.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
Abstract
Melt extrusion of lipids is versatile with high applicability in the pharmaceutical industry. The formulations prepared can be easily customized depending on the requirements, and have the potential to open a window on personalized medicine.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Current address: School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
7
|
De Coninck E, Vanhoorne V, Elmahdy A, Boone M, Van Assche G, Markl D, De Geest BG, De Beer T, Vervaet C. Prilling of API/fatty acid suspensions: Processability and characterisation. Int J Pharm 2019; 572:118756. [PMID: 31648017 DOI: 10.1016/j.ijpharm.2019.118756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
Abstract
Current study evaluated the processability and characteristics of prills made of an active pharmaceutical ingredient/fatty acid (API/FA) suspension instead of previously studied API/FA solutions to enlarge the application field of prilling. Metformin hydrochloride (MET) and paracetamol (PAR) were used as model APIs while both the effect of drug load (10-40%) and FA chain length (C14-C22) were evaluated. API/FA suspensions were processable on lab-scale prilling equipment without thermal degradation, nozzle obstruction or sedimentation in function of processing time. The collected prills were spherical (AR ≥ 0.898) with a smooth surface (sphericity ≥ 0.914) and a particle size of ±2.3 mm and 2.4 mm for MET and PAR prills, respectively, independent of drug load and/or FA chain length. In vitro drug release evaluation revealed a faster drug release at higher drug load, higher API water solubility and shorter FA chain length. Solid state characterisation via XRD and Raman spectroscopy showed that API and FA crystallinity was maintained after thermal processing via prilling and during storage. Evaluation of the similarity factor indicated a stable drug release (f2 > 50) from MET and PAR prills after 6 months storage at 25 °C or 40 °C.
Collapse
Affiliation(s)
- E De Coninck
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium.
| | - V Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium.
| | - A Elmahdy
- Materials Science and Technology - DyMaLab Research Group, Department of Electromechanical Systems and Materials, Ghent University, Zwijnaarde, Belgium.
| | - M Boone
- Centre for X-ray Tomography (UGCT), Department of Physics and Astronomy, Ghent University, Ghent, Belgium.
| | - G Van Assche
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Brussels, Belgium.
| | - D Markl
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom; EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation, University of Strathclyde, Glasgow, United Kingdom.
| | - B G De Geest
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium.
| | - T De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ghent, Belgium.
| | - C Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Duque L, Körber M, Bodmeier R. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants. Eur J Pharm Sci 2018; 117:128-137. [PMID: 29452211 DOI: 10.1016/j.ejps.2018.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired.
Collapse
Affiliation(s)
- Luisa Duque
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany
| | - Martin Körber
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany; Pensatech Pharma GmbH, Kelchstrasse 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|
9
|
Mandić J, Zvonar Pobirk A, Vrečer F, Gašperlin M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int J Pharm 2017; 533:335-345. [DOI: 10.1016/j.ijpharm.2017.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|