1
|
Malik MK, Kumar V, Kumarasamy V, Singh OP, Kumar M, Dixit R, Subramaniyan V, Singh J. Film Coating of Phosphorylated Mandua Starch on Matrix Tablets for pH-Sensitive Release of Mesalamine. Molecules 2024; 29:3208. [PMID: 38999160 PMCID: PMC11243319 DOI: 10.3390/molecules29133208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 07/14/2024] Open
Abstract
Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting.
Collapse
Affiliation(s)
- Mayank Kumar Malik
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249407, India; (M.K.M.); (J.S.)
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249407, India;
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Om Prakash Singh
- Department of Kaya Chikitsa, Rishikul Campus, Haridwar, Uttarakhand Ayurved University, Dehradun 248001, India;
| | - Mukesh Kumar
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249407, India;
| | - Raghav Dixit
- Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar 249407, India;
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jaspal Singh
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar 249407, India; (M.K.M.); (J.S.)
| |
Collapse
|
2
|
Patel K, Kevlani V, Shah S. A novel Posaconazole oral formulation using spray dried solid dispersion technology: in-vitro and in-vivo study. Drug Deliv Transl Res 2024; 14:1253-1276. [PMID: 37952081 DOI: 10.1007/s13346-023-01461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 11/14/2023]
Abstract
SD (solid dispersion) technology is one of the well-recognized solubility enhancement methods; but the use of versatile carriers in ASD (amorphous SD) to achieve the added advantage of modified release along with solubility improvement is an emerging area of exploration. Spray drying is a widely used technology with excellent scalability and product attributes. The SD carriers explored were Soluplus®, possessing excellent solubilization properties that may enhance bioavailability and is suitable for innovative processing, and Gelucire 43/01, a lipid polymer utilized in a non-effervescent-based floating gastro-retentive DDS for the modified release of API. The CPPs of spray drying were screened during preliminary trials, and the formulation variables were optimized using a 32 Full Factorial Design. All nine batches were evaluated for % yield, % drug content, flow properties, floating behavior, saturation solubility, and in-vitro drug release in 0.1 N HCl. The optimized batch characterized based on DSC (differential scanning calorimetry) and PXRD (powder X-ray diffraction) confirmed the amorphous nature of entrapped drug in SDD (spray-dried dispersion). Particle size analysis and SEM (scanning electron microscopy) demonstrated micron size irregular shaped particles. Residual solvent analysis by GCMS-HS confirmed the elimination of organic solvents from SDD. The optimized batch was found stable after 6 months stability study as per ICH guidelines. In-vivo roentgenography study in New Zealand white rabbit showed the residence of SDD in gastric environment for sufficient time. The pharmacokinetic study was performed in male Sprague-Dawley rats to determine the bioavailability of developed SDD based product in fasting and fed conditions, and to compare the data with marketed Noxafil formulation. The current research is focused on the development of a novel ternary SDD (spray-dried dispersion)-based gastro-retentive formulation for an anti-fungal drug Posaconazole.
Collapse
Affiliation(s)
- Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
- Gujarat Technological University, Ahmedabad, India
| | - Vijay Kevlani
- Department of Pharmacology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, 382 210, India.
| |
Collapse
|
3
|
Arshad MS, Kiran M, Mudassir J, Farhan M, Hussain A, Abbas N. Formulation, Optimization, in vitro and in-vivo evaluation of levofloxacin hemihydrate Floating Tablets. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e18630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Haimhoffer Á, Vasvári G, Trencsényi G, Béresová M, Budai I, Czomba Z, Rusznyák Á, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Vecsernyés M, Fenyvesi F. Process Optimization for the Continuous Production of a Gastroretentive Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2021; 22:187. [PMID: 34155595 PMCID: PMC8217006 DOI: 10.1208/s12249-021-02066-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 μm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - György Trencsényi
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - Monika Béresová
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető utca 2-4, Debrecen, H-4028, Hungary
| | - Zsuzsa Czomba
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| |
Collapse
|
5
|
Wook Huh H, Na YG, Kang H, Kim M, Han M, Mai Anh Pham T, Lee H, Baek JS, Lee HK, Cho CW. Novel self-floating tablet for enhanced oral bioavailability of metformin based on cellulose. Int J Pharm 2021; 592:120113. [PMID: 33246050 DOI: 10.1016/j.ijpharm.2020.120113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022]
Abstract
Metformin has several problems such as low bioavailability, short half-life, and narrow absorption window, sustained and site-specific drug delivery system is required. Floating drug delivery systems are very useful to achieve these purposes. However, conventional floating systems have several limitations; lag time, a high proportion of excipient in the tablet, using non-biocompatible excipient, and requirement of a complicated procedure. To overcome these obstacles, we developed a hollow-core floating tablet (HCFT). The HCFT immediately floated in pH 1.2, 4.0, 6.8 medium, and even distilled water. The floating duration time of HCFT was>24 h. From the in vitro release study, it was confirmed that HCFT showed the sustain release profile of metformin for 12 h. Water uptake and matrix erosion were evaluated for predicting the buoyancy and drug release kinetics of HCFT in the body. Factor analysis was applied to optimize the formulation. There were significant (p < 0.05) differences in metformin plasma concentration of 4 h and 6 h between two groups. Compared with Glucophage® XR, the relative bioavailability of metformin HCFT was 123.81 ± 3.52%. The X-ray imaging of optimized formulation revealed that HCFT was constantly floating in the stomach region of the rabbit, thereby indicating improved gastric retention for>6 h. Consequently, all the findings indicate that HCFT could be an effective gastric retention system and applied extensively to other drugs with narrow absorption windows.
Collapse
Affiliation(s)
- Hyun Wook Huh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - HeeChol Kang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Minki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mingu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Thi Mai Anh Pham
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyeonmin Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National Univerisity, Chucheon, Gangwon-do 25949, Republic of Korea.
| | - Hong-Ki Lee
- Animal Model Research Group, Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do 53212, Republic of Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
In vivo evaluation of targeted delivery of biological agents using barium sulfate. Int J Pharm 2019; 572:118801. [PMID: 31678529 DOI: 10.1016/j.ijpharm.2019.118801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022]
Abstract
This study was aimed to monitor the transit through the intestine by X-ray imaging using barium sulfate (BS) as tracer. The in vitro features of monolithic tablets were correlated with their in vivo behavior in order to provide a tool for the development of targeted formulations containing macromolecular bioactive agents. The impact of BS on various matrices (neutral, ionic) was studied in simulated fluids using the disintegration time (DT) as main parameter. Dry tablets were characterized by spectroscopic methods (X-ray diffraction and Infra-Red) and scanning electron microscopy (SEM). The selected formulations were followed in a beagle dog model. The in vivo and in vitro DT of tablets formulated with BS were compared. Results: anionic excipients carboxymethylcellulose (CMC) and carboxymethylstarch (CMS) protected the active ingredient from the gastric acidity, ensuring its targeted delivery in the intestine. The SEM analysis, before and after transit in simulated fluids, showed that BS remained in the tablets allowing their good follow-up in vivo. The incorporation of 30% protein in tablets with 40% BS had no impact on their behavior. In conclusion, BS and X-ray imagery could be a good alternative to scintigraphy for development of targeted formulations containing high molecular weight bioactive agents.
Collapse
|
7
|
Vasvári G, Haimhoffer Á, Horváth L, Budai I, Trencsényi G, Béresová M, Dobó-Nagy C, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Sinka D, Vecsernyés M, Fenyvesi F. Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2019; 20:290. [PMID: 31428895 PMCID: PMC6700043 DOI: 10.1208/s12249-019-1500-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 11/30/2022] Open
Abstract
Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids.
Collapse
|
8
|
Gong L, Yu M, Sun Y, Gao Y, An T, Zou M, Cheng G. Design and optimization of gastric floating sustained-release mini-tablets of alfuzosin hydrochloride based on a factorial design: in vitro/in vivo evaluation. Drug Dev Ind Pharm 2018; 44:1990-1999. [PMID: 30058391 DOI: 10.1080/03639045.2018.1506473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this research was to develop multiple-unit gastric floating mini-tablets and to evaluate the possibility of using these mini-tablets as a delivery system to improve the drug absorption for drugs with a narrow absorption window. Mini-tablets were prepared using hydroxypropyl methylcellulose (HPMC K100M) and carbopol 971P as release retarding agents and sodium bicarbonate (NaHCO3) as gas-forming agent. The properties of the prepared mini-tablets in terms of floating characteristic parameters and in vitro release were evaluated. Furthermore, in vivo gastric retention study in rats and in vivo pharmacokinetic study in rabbits of the optimized formulation were performed. The optimized mini-tablets containing 45% HPMC K100M, 15% stearyl alcohol, 13% carbopol 971P, and 12% NaHCO3 were found to float immediately within 1 min and duration more than 9 h. The in vivo gastric retention study results indicated that the mini-tablets could retain in the stomach for more than 6.67 h. Furthermore, the AUC0-t of the floating mini-tablets (6849.83 ± 753.80 h ng·mL-1) was significantly higher than that of marketed sustained-release tablets XATRAL®XL (4970.16 ± 924.60 h ng·mL-1). All these results illustrated that the gastric floating mini-tablets might be a promising drug delivery system for drugs with a narrow absorption window.
Collapse
Affiliation(s)
- Ling Gong
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Miao Yu
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Yanyan Sun
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Ying Gao
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Tong An
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Meijuan Zou
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Gang Cheng
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
9
|
Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, Cai W, Tao T, Xiang X. Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone. Sci Rep 2017; 7:2829. [PMID: 28588251 PMCID: PMC5460192 DOI: 10.1038/s41598-017-03097-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/21/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to explore the feasibility of fused deposition modeling (FDM) 3D printing to prepare intragastric floating sustained release (FSR) tablets. Domperidone (DOM), an insoluble weak base, was chosen as a model drug to investigate the potential of FSR in increasing its oral bioavailability and reducing its administration frequency. DOM was successfully loaded into hydroxypropyl cellulose (HPC) filaments using hot melt extrusion (HME). The filaments were then printed into hollow structured tablets through changing the shell numbers and the infill percentages. Physical characterization results indicated that the majority of DOM gradually turned into the amorphous form during the fabrication process. The optimized formulation (contain 10% DOM, with 2 shells and 0% infill) exhibited the sustained release characteristic and was able to float for about 10 h in vitro. Radiographic images showed that the BaSO4-labeled tablets were retained in the stomach of rabbits for more than 8 h. Furthermore, pharmacokinetic studies showed the relative bioavailability of the FSR tablets compared with reference commercial tablets was 222.49 ± 62.85%. All the results showed that FDM based 3D printing might be a promising way to fabricate hollow tablets for the purpose of intragastric floating drug delivery.
Collapse
Affiliation(s)
- Xuyu Chai
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Hongyu Chai
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Jingjing Yang
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Jin Li
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Yan Zhao
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, P.R. China
| | - Tao Tao
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, 201203, P.R. China.
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, P.R. China.
| |
Collapse
|