1
|
Cao N, Zong X, Guo X, Chen X, Nie D, Huang L, Li L, Ma Y, Wang C, Pang S. The adsorption effects of biochar on carbofuran in water and the mixture toxicity of biochar-carbofuran in rats. CHEMOSPHERE 2024; 350:140992. [PMID: 38141676 DOI: 10.1016/j.chemosphere.2023.140992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/11/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Carbofuran, a widely used carbamate insecticide, is frequently detected in water. In this study, a high-performance adsorbent (WAB4) for carbofuran was obtained from laboratory-synthesized biochars. The maximum adsorption of carbofuran by WAB4 reaches 113.7 mg/g approximately. The adsorption of carbofuran by biochar was a multi-molecular layer and the adsorption process conforms to the pseudo-second-order kinetic model (R2 = 0.9984) and Freundlich isotherm model (R2 = 0.99). Importantly, an in vivo rat model was used to assess the combined toxicological effects of biochar-carbofuran complexes. The toxicity of the complexes (LD50 > 12 mg/kg) is lower than that of carbofuran (LD50 = 7.9 mg/kg) alone. The damage of biochar-carbofuran complex on rat liver and lung is significantly less than that of carbofuran. The Cmax and bioavailability of carbofuran were found to be reduced by 64% and 68%, respectively, when biochar was present, by UPLC-MS/MS analysis of carbofuran in rat plasma. Furthermore, it was confirmed that the biochar-carbofuran complex is relatively stable in the gastrointestinal tract, by performing a carbofuran release assay in artificial gastrointestinal fluids in vitro. Collectively, biochar is a bio-friendly material for the removal of carbofuran from water.
Collapse
Affiliation(s)
- Niannian Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xingxing Zong
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xuanjun Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Dongxing Nie
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Lan Huang
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilians, Beijing, 102205, China.
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
The Pharmacokinetics of Medetomidine Administered Subcutaneously during Isoflurane Anaesthesia in Sprague-Dawley Rats. Animals (Basel) 2020; 10:ani10061050. [PMID: 32570809 PMCID: PMC7341258 DOI: 10.3390/ani10061050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Anaesthetic protocols involving the combined use of a sedative agent, medetomidine, and an anaesthetic agent, isoflurane, are increasingly being used in functional magnetic resonance imaging (fMRI) studies of the rodent brain. Despite the popularity of this combination, a standardised protocol for the combined use of medetomidine and isoflurane has not been established, resulting in inconsistencies in the reported use of these drugs. This study investigated the pharmacokinetic detail required to standardise the use of medetomidine and isoflurane in rat brain fMRI studies. Using mass spectrometry, serum concentrations of medetomidine were determined in Sprague-Dawley rats during medetomidine and isoflurane anaesthesia. The serum concentration of medetomidine for administration with 0.5% (vapouriser setting) isoflurane was found to be 14.4 ng/mL (±3.0 ng/mL). The data suggests that a steady state serum concentration of medetomidine when administered with 0.5% (vapouriser setting) isoflurane can be achieved with an initial subcutaneous (SC) dose of 0.12 mg/kg of medetomidine followed by a 0.08 mg/kg/h SC infusion of medetomidine. Consideration of these results for future studies will facilitate standardisation of medetomidine and isoflurane anaesthetic protocols during fMRI data acquisition.
Collapse
|