1
|
Improvement of the Bioavailability and Anti-hepatic Alveolar Echinococcosis Effect of Albendazole-Isethionate/Hypromellose Acetate Succinate (HPMC-AS) Complex. Antimicrob Agents Chemother 2021; 65:e0223320. [PMID: 33875425 DOI: 10.1128/aac.02233-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maximizing the pharmacodynamics of albendazole (ABZ), which is used to treat echinococcoses, is essential for the long-term treatment of echinococcosis patients. ABZ is a weak base whose solubility depends on the pH value of the solvent. After it has been orally administered, its solubility drops sharply from when it is in gastric juices (pH 1.4) to when it is in intestinal juices (pH 6.5) and is subsequently absorbed in the ileum and jejunum. This results in low solubility and poor bioavailability of the drug. In this study, we developed an orally administered albendazole-isethionate (ABZ-HES)/hypromellose acetate succinate (HPMC-AS) complex tablet (TABZ-HES-H) with improved solubility and bioavailability. Previous studies demonstrated that ABZ-HES has a higher intrinsic dissolution rate under pH 1.4 than the ABZ free base used in the commercial product Albenda and that HPMC-AS can effectively inhibit ABZ crystallization, which could be due to the hydrophobic interaction between ABZ and HPMC-AS in an aqueous environment. In this study, the dissolution behavior of TABZ-HES-H in vitro was studied by the two-step pH conversion method. Our results demonstrated that the oral bioavailability of TABZ-HES-H was approximately 2.6 times higher than that of ABZ. More importantly, in the rat model of secondary hepatic alveolar echinococcosis, the anti-hepatic alveolar echinococcosis effect of TABZ-HES-H was 3.4 times higher than that of a commercial product. The improved preparation with salt and polymer has proven to be a feasible method of improving the oral bioavailability and pharmacodynamics of ABZ.
Collapse
|
2
|
Sigfridsson K, Arvidsson T, Xue A, Wagner DJ, Pop-Damkov P, Zhang G, Strimfors M. A candidate drug administered subcutaneously to rodents as drug particles showing hepatic recirculation which influenced the sustained release process. Int J Pharm 2020; 581:119252. [PMID: 32240808 DOI: 10.1016/j.ijpharm.2020.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to evaluate and interpret the pharmacokinetic profiles after subcutaneous (s.c.) administration of crystalline AZ'72 nano- and microsuspensions to rodents. Both formulations were injected at 1.5 and 150 mg/kg to rats. For the lower dose, the profiles were similar after s.c. injection but extended as compared to oral administration. The overall exposure was higher for nanoparticles compared with microparticles during the investigated period. For the higher dose, injection of both suspensions resulted in maintained plateaus caused by the drug depots but, unexpectedly, at similar exposure levels. After addition of a further stabilizer, pluronic F127, nanosuspensions showed improved exposure with dose and higher exposure compared to larger particles in mice. Obviously, a stabilizer mixture that suits one delivery route is not necessarily optimal for another one. The differences in peak concentration (Cmax) between nano- and microparticles were mainly ascribed to differences in dissolution rate. Plasma profiles in mice showed curves with secondary absorption peaks after intravenous and oral administration, suggesting hepatic recirculation following both administration routes. This process, together with the depot formulation, complicates the analysis of absorption from s.c. administration, i.e. multiple processes were driving the plasma profile of AZ'72.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Torbjörn Arvidsson
- Early Product Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Aixiang Xue
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, USA
| | - David J Wagner
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, USA
| | - Petar Pop-Damkov
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, USA
| | - Guangnong Zhang
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, USA
| | - Marie Strimfors
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
3
|
Sigfridsson K, Ulvinge ML, Svensson L, Granath AK. A case study where pharmaceutical salts were used to address the issue of low in vivo exposure. Drug Dev Ind Pharm 2018; 45:202-211. [PMID: 30256689 DOI: 10.1080/03639045.2018.1529184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The present active pharmaceutical ingredient (API) is a lipophilic compound with a significant risk of not achieving therapeutic plasma concentrations due to solubility-limited absorption. The aim of the presented studies was to investigate whether three novel salts of a new selected candidate in the cardiovascular therapy area could be applied to improve intestinal absorption and the subsequent in vivo exposure. Three salts (chloride, hydrogen sulfate, and hemi-1.5-naphtalenedisulphonate) of the compound were manufactured and investigated regarding solubility, dissolution rate, and in vivo exposure in rats. The chemical and physical stability of the salt forms (and the crystalline parent compound) were followed in solid state, when dissolved and when formulated as microsuspensions. All salts showed improved solubility in investigated media, increased dissolution rate, and elevated in vivo exposures compared to a nanocrystal formulation (top-down) of the parent free base of the compound. The chloride- and the hydrogen sulfate salts of the API showed similar patterns regarding the chemical stability in solid state as the crystalline free base, while the salt formed of the hemi-1.5-naphtalenedisulphonic acid showed significantly improved stability. In conclusion, this study showed that three salts of a new selected candidate drug could be used to improve solubility, increase dissolution rate, and enhance oral absorption compared with a more commonly used nanocrystal formulation of the API. However, the identity of the counter ion appeared to be of less importance. On the other hand, only the salt of the hemi-1.5-naphtalenedisulphonic acid seemed to improve chemical stability compared with the API.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- a Advanced Drug Delivery, Pharmaceutical Science, IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | | | - Lena Svensson
- c Cardiovascular and Metabolic Diseases, Bioscience, IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Anna-Karin Granath
- d Global Patient Safety, IMED Biotech Unit , AstraZeneca , Gothenburg , Sweden
| |
Collapse
|
4
|
Chattoraj S, Daugherity P, McDermott T, Olsofsky A, Roth WJ, Tobyn M. Sticking and Picking in Pharmaceutical Tablet Compression: An IQ Consortium Review. J Pharm Sci 2018; 107:2267-2282. [DOI: 10.1016/j.xphs.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
|