1
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
2
|
Umar H, Wahab HA, Attiq A, Amjad MW, Bukhari SNA, Ahmad W. Platinum-based targeted chemotherapies and reversal of cisplatin resistance in non-small cell lung cancer (NSCLC). Mutat Res 2024; 828:111856. [PMID: 38520879 DOI: 10.1016/j.mrfmmm.2024.111856] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Lung cancer is the one of the most prevalent cancer in the world. It kills more people from cancer than any other cause and is especially common in underdeveloped nations. With 1.2 million instances, it is also the most prevalent cancer in men worldwide, making about 16.7% of the total cancer burden. Surgery is the main form of curative treatment for early-stage lung cancer. However, the majority of patients had incurable advanced non-small cell lung cancer (NSCLC) recurrence after curative purpose surgery, which is indicative of the aggressiveness of the illness and the dismal outlook. The gold standard of treatment for NSCLC patients includes drug targeting of specific mutated genes drive in development of lung cancer. Furthermore, patients with advanced NSCLC and those with early-stage illness needing adjuvant therapy should use cisplatin as it is the more active platinum drug. So, this review encompasses the non-small cell lung cancer microenvironment, treatment approaches, and use of cisplatin as a first-line regimen for NSCLC, its mechanism of action, cisplatin resistance in NSCLC and also the prevention strategies to revert the drug resistance.
Collapse
Affiliation(s)
- Hassaan Umar
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia.
| | - Ali Attiq
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Waqas Ahmad
- School of Pharmaceutical Science, Universiti Sains Malaysia, Minden, Pulau Pinang 11800, Malaysia.
| |
Collapse
|
3
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
4
|
Cisplatin-loaded nanoformulations for cancer therapy: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Xia J, Hu JN, Wang Z, Cai EB, Ren S, Wang YP, Lei XJ, Li W. Based on network pharmacology and molecular docking to explore the protective effect of Epimedii Folium extract on cisplatin-induced intestinal injury in mice. Front Pharmacol 2022; 13:1040504. [PMID: 36313368 PMCID: PMC9596753 DOI: 10.3389/fphar.2022.1040504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Epimedii Folium, as a natural botanical medicine, has been reported to have protective effects on intestinal diseases by modulating multiple signaling pathways. This study aimed to explore the potential targets and molecular mechanisms of Epimedii Folium extract (EFE) against cisplatin-induced intestinal injury through network pharmacology, molecular docking, and animal experiments. Methods: Network pharmacology was used to predict potential candidate targets and related signaling pathways. Molecular docking was used to simulate the interactions between significant potential candidate targets and active components. For experimental validation, mice were intraperitoneally injected with cisplatin 20 mg/kg to establish an intestinal injury model. EFE (100, 200 mg/kg) was administered to mice by gavage for 10 days. The protective effect of EFE on intestinal injury was analyzed through biochemical index detection, histopathological staining, and western blotting. Results: Network pharmacology analysis revealed that PI3K-Akt and apoptosis signaling pathways were thought to play critical roles in EFE treatment of the intestinal injury. Molecular docking results showed that the active constituents of Epimedii Folium, including Icariin, Epimedin A, Epimedin B, and Epimedin C, stably docked with the core AKT1, p53, TNF-α, and NF-κB. In verified experiments, EFE could protect the antioxidant defense system by increasing the levels of glutathione peroxidase (GSH-Px) and catalase (CAT) while reducing the content of malondialdehyde (MDA). EFE could also inhibit the expression of NF-κB and the secretion of inflammatory factors, including TNF-α, IL-1β, and IL-6, thereby relieving the inflammatory damage. Further mechanism studies confirmed that EFE had an excellent protective effect on cisplatin-induced intestinal injury by regulating PI3K-Akt, caspase, and NF-κB signaling pathways. Conclusion: In summary, EFE could mitigate cisplatin-induced intestinal damage by modulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Juan Xia
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - En-Bo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Xiu-Juan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| | - Wei Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| |
Collapse
|
6
|
Di Miceli JFF, Andrade MER, Carvalho PLA, Santos EA, Faria Mota Oliveira AEMD, Fernandes CP, Cruz RAS, Garrett R, Mosqueira VCF, Cassali GD, D'Haese C, Nysten B, Leite JIA, Cardoso VN, Araújo RS. Lecithin-based nanocapsule loading sucupira ( Pterodon emarginatus) oil effects in experimental mucositis. Toxicol Rep 2022; 9:1537-1547. [PMID: 36518414 PMCID: PMC9743464 DOI: 10.1016/j.toxrep.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/01/2022] Open
Abstract
Intestinal mucositis (IM) is a frequent adverse effect in anticancer therapy without standard treatment. The oil obtained from sucupira (Pterodon emarginatus) has anti-inflammatory properties, and the soybean lecithin reduces the intestinal toxicity of several xenobiotics. However, their water insolubility impairs the in vivo application. For this reason, we evaluated if the nanoencapsulation of sucupira oil (SO) in lecithin-based nanocapsules (SO-NC) could be a therapeutically effective system for the treatment of IM in murine cisplatin (CDDP)-induced intestinal mucositis model. SO was analyzed by LC-HRMS/MS and HPLC. SO-NC was prepared by nanoprecipitation and characterized using DLS, HPLC, and AFM. Mice body weight and food consumption were assessed daily during experimental mucositis induced by CDDP. The animals were euthanized, and intestinal permeability, inflammatory mediators, and intestinal histology were performed. SO-NC demonstrated adequate characteristics for oral administration as size under 300 nm, IP < 0.3, high EE, and spherical shape. In vitro cytotoxicity performed against RAW 264.7 cell lines resulted in cell viability above 80 % confirming the non-cytotoxic profile of SO (IC50 268 µg/mL) and SO-NC (IC50 118.5 µg/mL) up to 117.2 µg/mL. The untreated mice showed intestinal toxicity after i.p. of CDDP, principally weight loss, increased intestinal permeability, and MPO and TNF-α levels. Surprisingly, the administration of SO to CDDP-mucositis animals did not circumvent the CDDP effects and increased intestinal permeability. However, SO-NC proved efficient in mitigating the experimental intestinal mucositis by improving intestinal epithelium architecture, reducing intestinal permeability, and improving the MPO levels. In conclusion, SO-NC can positively impact intestinal mucositis by promoting mucosal recovery. This is a promising strategy for developing a new treatment for intestinal mucositis.
Collapse
Affiliation(s)
| | - Maria Emília Rabelo Andrade
- Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Paula Lopes Armond Carvalho
- Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Elandia Aparecida Santos
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | | | - Caio Pinho Fernandes
- Department of Biological and Health Sciences, Universidade Federal do Amapá (UNIFAP), Campus Marco Zero, Macapá 68903-419, AP, Brazil
| | - Rodrigo Alves Soares Cruz
- Department of Biological and Health Sciences, Universidade Federal do Amapá (UNIFAP), Campus Marco Zero, Macapá 68903-419, AP, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Av. Pedro Calmon, 550, Rio de Janeiro 21941-598, RJ, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Department of Pharmacy – Pharmacy School, Universidade Federal de Ouro Preto, (UFOP), Morro do Cruzeiro, Ouro Preto 35400-000, MG, Brazil
| | - Geovanni Dantas Cassali
- Department de General Pathology, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Cecile D'Haese
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, 1348 Louvain-la-Neuve, Belgium
| | - Bernard Nysten
- Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, 1348 Louvain-la-Neuve, Belgium
| | - Jacqueline Isaura Alvarez Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil
| | - Raquel Silva Araújo
- Department of Biological and Health Sciences, Universidade Federal do Amapá (UNIFAP), Campus Marco Zero, Macapá 68903-419, AP, Brazil
| |
Collapse
|
7
|
Araújo RS, Cristina Oliveira M, Cardoso VN, Keefe DMK, Stringer AM. The effect of free and encapsulated cisplatin into long-circulating and pH-sensitive liposomes on IEC-6 cells during wound healing in the presence of host-microbiota. J Pharm Pharmacol 2021; 74:711-717. [PMID: 34791381 DOI: 10.1093/jpp/rgab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To circumvent cisplatin (CDDP) toxic effects and improve the antitumoural effect, our research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). This study aimed to evaluate whether SpHL-CDDP is associated with intestinal protection under in-vitro conditions in the presence of host-microbiota, compared with free CDDP. METHODS The cytotoxicity of CDDP and SpHL-CDDP were evaluated by colorimetric MTT and sulforhodamine B (SRB) assays. Epithelial proliferation was assessed by using an in-vitro wounding model in the presence of host-microbiota with intestinal epithelial cell line 6 (IEC-6) monolayers. Cytokines were determined by ELISA. KEY FINDINGS Reduced cytotoxicity of SpHL-CDDP in IEC-6 cells (minimum of 1.3-fold according to the IC50 values) was observed when compared with CDDP. The presence of microbiota or CDDP reduced the wound healing. The association of microbiota and SpHL-CDDP improved the wound healing and cell number in IEC-6 cells when compared with control. These beneficial results can be associated with increased IL-6 and IL-10 levels induced by SpHL-CDDP which were affected by the presence of microbiota. CONCLUSIONS These results indicate that the presence of microbiota associated with SpHL-CDDP provided less intestinal cellular damages compared with CDDP and constitutes a promising candidate for clinical use.
Collapse
Affiliation(s)
- Raquel Silva Araújo
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dorothy M K Keefe
- Department of Medicine, Mucositis Research Group, The University of Adelaide, Adelaide, SA, Australia
| | - Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Deng L, Zeng H, Hu X, Xiao M, He D, Zhang Y, Jin Y, Hu Y, Zhu Y, Gong L, Wang Z, Xiang L, Zhu R, Zhang Y, Cheng Y, Chen X, Zhang S, Peng Y, Cao K. Se@Albumin nanoparticles ameliorate intestinal mucositis caused by cisplatin via gut microbiota-targeted regulation. NANOSCALE 2021; 13:11250-11261. [PMID: 34152347 DOI: 10.1039/d0nr07981b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy-associated intestinal mucositis is still one of the major challenges in the first-line clinical cancer treatment. Selenium element has shown health benefits on enteritis upon uptake in trace amounts; however, it was limited because of its narrow safety margin. In this work, a new form of Se@Albumin complex nanoparticles (Se@Albumin NPs) was developed by self-assembly of denatured human serum albumin and selenite salts. Se@Albumin NPs significantly improve intestinal mucositis induced with cisplatin (CDDP) in a mouse model via attenuating the level of intestinal oxidative stress, reducing intestinal permeability, and relieving gastric dysmotility. It is very interesting that the restoration of anti-inflammatory bacteria (Bacteroidetes and Firmicutes) and reduced abundance of proinflammatory bacteria (Escherichia) contributed to the reduction of intestinal mucositis by Se@Albumin NPs in mice. In addition, the fecal microbiota transplantation (FMT) with materials from Se@Albumin NP-treated mice significantly protected pseudo-aseptic mice from CDDP-induced intestinal mucositis. In conclusion, our findings showed that Se@Albumin NPs can significantly improve CDDP-induced intestinal mucositis, and its function may be directly mediated by gut microbiota regulation, which will provide new helpful information for clinical treatment.
Collapse
Affiliation(s)
- Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuznetsova DA, Gabdrakhmanov DR, Gaynanova GA, Vasileva LA, Kuznetsov DM, Lukashenko SS, Voloshina AD, Sapunova AS, Nizameev IR, Sibgatullina GV, Samigullin DV, Kadirov MK, Petrov KA, Zakharova LY. Novel biocompatible liposomal formulations for encapsulation of hydrophilic drugs – Chloramphenicol and cisplatin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Camilo CJJ, Leite DOD, Silva ARA, Menezes IRA, Coutinho HDM, Costa JGM. Lipid vesicles: applications, principal components and methods used in their formulations: A review. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n2.74830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Liposomes and niosomes are currently the most studied lipid vesicles in the nanomedicine field. The system formed by a phospholipid bilayer in aqueous medium allows these vesicles to carry both hydrophilic and lipophilic compounds, providing an increase in solubility of drugs lready used in conventional therapy. The focus on the development of these vesicles should be directed to determining the ideal composition, with low toxicity, biocompatibility and which remains stable for long periods. These characteristics are related to the components used for formulation and the substances that will be encapsulated. Another important point relates to the methods used during formulation, which are important in determining the type of vesicle formed, whether these be large or small, unilamellar or multilamellar. Because of the deliberate actions applied in the development of these vesicles, this review sought to gather updated information regarding the different methods used, including their main components while considering the behavior of each of them when used in different formulations. Also, data showing the importance of formulations in the medical field evidencing studies performed with liposome and niosome vesicles as promising in this area, and others, were included. The approach allows a better understanding of the participation of components in formulations such as cholesterol and non-ionic surfactants, as well as the basis for choosing the ideal components and methods for future research in the development of these vesicles.
Collapse
|
11
|
Ding X, Yin C, Zhang W, Sun Y, Zhang Z, Yang E, Sun D, Wang W. Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer. NANOSCALE RESEARCH LETTERS 2020; 15:68. [PMID: 32232589 PMCID: PMC7105578 DOI: 10.1186/s11671-020-03297-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/11/2020] [Indexed: 05/10/2023]
Abstract
This study proposes the synthesis of a type of anticancer nanoparticle, aptamers and Au nanoparticle (Apt-Au)-modified Morin pH-sensitive liposome (MSL), which exhibits targeting properties. Tumors are difficult to cure because their microenvironment varies from that of normal tissue; its pH is lower than that of normal tissue, which generally impedes the effectiveness of drugs. Thus, pH-responsive drugs have attracted extensive attention. Gold nanoparticles (AuNPs) show potential as drug carriers because of their small size, good biocompatibility, easy surface modification, and strong cell penetration. Apt-Au@MSL exhibits excellent monodispersity and tumor-targeting properties and can be released in partly acidic environment via dialysis. We screened our model cancer cell by MTT assay and found that SGC-7901 cells can effectively suppress proliferation. In vivo results demonstrate that the administration of Apt-Au@MSL could inhibit tumor growth in xenograft mouse models. H&E staining and TUNEL assay further confirmed that Apt-Au@MSL can promote tumor apoptosis. Apt-Au@MSL may induce apoptosis by triggering overproduction of reactive oxygen species (ROS) and regulating multiple signal crosstalk. Both blood biochemistry tests and H&E staining suggested that these materials exhibit negligible acute toxicity and good biocompatibility in vivo. With its powerful function, Apt-Au@MSL can be used as a target-based anticancer material for future clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyuan Ding
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Zhang
- School of Biochemical Engineering, Anhui Polytechnic University, 8 Zheshan Road, Wuhu, 241000, Anhui, China
| | - Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenzhen Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm 2019; 572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
|
13
|
Farooq MA, Aquib M, Farooq A, Haleem Khan D, Joelle Maviah MB, Sied Filli M, Kesse S, Boakye-Yiadom KO, Mavlyanova R, Parveen A, Wang B. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1674-1692. [PMID: 31066300 DOI: 10.1080/21691401.2019.1604535] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin cis-(diammine)dichloridoplatinum(II) (CDDP) is the first platinum-based complex approved by the food and drug administration (FDA) of the United States (US). Cisplatin is the first line chemotherapeutic agent used alone or combined with radiations or other anti-cancer agents for a broad range of cancers such as lung, head and neck. Aroplatin™, Lipoplatin™ and SPI-077 are PEGylated liposome-based nano-formulations that are still under clinical trials. They have many limitations, for example, poor aqueous solubility, drug resistance and toxicities, which can be overcome by encapsulating the cisplatin in Nemours nanocarriers. The extensive literature from different electronic databases covers the different nano-delivery systems that are developed for cisplatin. This review critically emphasizes on the recent advancement, development, innovations and updated literature reported for different carrier systems for CDDP.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Md Aquib
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Anum Farooq
- b Department of Chemistry , Government College University , Faisalabad , Pakistan
| | - Daulat Haleem Khan
- c Department of Pharmacy , Lahore College of Pharmaceutical Sciences , Lahore , Pakistan
| | - Mily Bazezy Joelle Maviah
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Mensura Sied Filli
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Samuel Kesse
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Kofi Oti Boakye-Yiadom
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Rukhshona Mavlyanova
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Amna Parveen
- d College of Pharmacy , Gachon University, Hambakmoero , Yeonsu-gu, Incheon , Korea.,e Department of Pharmacogonsy , Faculty of Pharmaceutical Science, Government College University , Faisalabad , Pakistan
| | - Bo Wang
- a Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
14
|
Wu CH, Ko JL, Liao JM, Huang SS, Lin MY, Lee LH, Chang LY, Ou CC. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther Adv Med Oncol 2019; 11:1758835918821021. [PMID: 30792823 PMCID: PMC6376546 DOI: 10.1177/1758835918821021] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background There are close links between chemotherapy-induced intestinal mucositis and microbiota dysbiosis. Previous studies indicated that D-methionine was an excellent candidate for a chemopreventive agent. Here, we investigated the effects of D-methionine on cisplatin-induced mucositis. Materials and methods Male Wistar rats (176-200 g, 6 weeks old) were given cisplatin (5 mg/kg) and treated with D-methionine (300 mg/kg). Histopathological, digestive enzymes activity, oxidative/antioxidant status, proinflammatory/anti-inflammatory cytokines in intestinal tissues were measured. Next-generation sequencing technologies were also performed to investigate the gut microbial ecology. Results D-methionine administration increased villus length and crypt depth and improved digestive enzyme (leucine aminopeptidase, sucrose and alkaline phosphatase) activities in the brush-border membrane of cisplatin-treated rats (p < 0.05). Furthermore, D-methionine significantly attenuated oxidative stress and inflammatory reaction and increased interleukin-10 levels in cisplatin-induced intestinal mucositis (p < 0.05). Cisplatin administration resulted in high relative abundances of Deferribacteres and Proteobacteria and a low diversity of the microbiota when compared with control groups, D-methionine only and cisplatin plus D-methionine. Cisplatin markedly increased comparative abundances of Bacteroides caccae, Escherichia coli, Mucispirillum schaedleri, Bacteroides uniformis and Desulfovibrio C21-c20, while Lactobacillus was almost completely depleted, compared with the control group. There were higher abundances of Lactobacillus, Lachnospiraceae, and Clostridium butyrium in cisplatin plus D-methionine rats than in cisplatin rats. D-methionine treatment alone significantly increased the number of Lactobacillus reuteri. Conclusion D-methionine protects against cisplatin-induced intestinal damage through antioxidative and anti-inflammatory effects. By enhancing growth of beneficial bacteria (Lachnospiraceae and Lactobacillus), D-methionine attenuates gut microbiome imbalance caused by cisplatin and maintains gut homeostasis.
Collapse
Affiliation(s)
- Cheng-Hsi Wu
- Department of Family Medicine, Jen-Ai Hospital, Dali, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ling-Hui Lee
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Li-Yu Chang
- Department of Nursing, Jen-Ai Hospital, Dali, Taichung, Taiwan
| | - Chu-Chyn Ou
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Chien-Kuo N. Road, Taichung 40203, Taiwan
| |
Collapse
|
15
|
Roy H, Nayak BS, Abdul Rahaman S. Nano Drugs. CHARACTERIZATION AND BIOLOGY OF NANOMATERIALS FOR DRUG DELIVERY 2019:445-475. [DOI: 10.1016/b978-0-12-814031-4.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
High-Fiber Diets in Gastrointestinal Tract Diseases. DIETARY INTERVENTIONS IN GASTROINTESTINAL DISEASES 2019. [DOI: 10.1016/b978-0-12-814468-8.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|