1
|
Sakhiya DC, Borkhataria CH. A review on advancement of cocrystallization approach and a brief on screening, formulation and characterization of the same. Heliyon 2024; 10:e29057. [PMID: 38601657 PMCID: PMC11004889 DOI: 10.1016/j.heliyon.2024.e29057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The objective of this review is, to discuss recent advancements in screening methods for co-formers, evaluation cum confirmation methods and co-crystallization with examples. Co-crystals are considered as a new form of an old drug entity. Co-crystals improve the stability, hygroscopicity, solubility, dissolution, and physicochemical properties of pure drugs without altering chemical and pharmacological properties. Advancement in co-crystal formulation methods like electrospray and laser-irradiation methods are showing potential for solvent-free co-crystallization and tends to give better yield and lesser loss of materials. Screening methods are also transformed from trial and error to in-silico methods, which facilitate the selection process by reducing the time of screening and increasing the number of co-formers to be screened. Advanced evaluation methods like Raman and solid-state NMR spectroscopy provide a better understanding of crystal lattice by pinpointing the interaction between drug/co-former molecules. The same evaluation methods can also differentiate between the formation of salt and co-crystals. Co-crystals are helping open a new door in pharmaceutical industries in the field of formulation for the improvement of physicochemical properties in existing old molecules and several new molecules. With a motto of "making a good drug better", co-crystals show scope for vast research and give researchers an ocean of opportunities to make the impossible, possible.
Collapse
Affiliation(s)
- Dhruv C. Sakhiya
- Gujarat Technological University (GTU) Nr.Vishwakarma Government Engineering College Nr.Visat Three Roads, Visat - Gandhinagar Highway Chandkheda, Ahmedabad, 382424, Gujarat, India
| | | |
Collapse
|
2
|
Racher F, Petrick TL, Braun DE. Exploring the Supramolecular Interactions and Thermal Stability of Dapsone:Bipyridine Cocrystals by Combining Computational Chemistry with Experimentation. CRYSTAL GROWTH & DESIGN 2023; 23:4638-4654. [PMID: 37304396 PMCID: PMC10251420 DOI: 10.1021/acs.cgd.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Indexed: 06/13/2023]
Abstract
The application of computational screening methodologies based on H-bond propensity scores, molecular complementarity, molecular electrostatic potentials, and crystal structure prediction has guided the discovery of novel cocrystals of dapsone and bipyridine (DDS:BIPY). The experimental screen, which included mechanochemical and slurry experiments as well as the contact preparation, resulted in four cocrystals, including the previously known DDS:4,4'-BIPY (2:1, CC44-B) cocrystal. To understand the factors governing the formation of the DDS:2,2'-BIPY polymorphs (1:1, CC22-A and CC22-B) and the two DDS:4,4'-BIPY cocrystal stoichiometries (1:1 and 2:1), different experimental conditions (such as the influence of solvent, grinding/stirring time, etc.) were tested and compared with the virtual screening results. The computationally generated (1:1) crystal energy landscapes had the experimental cocrystals as the lowest energy structures, although distinct cocrystal packings were observed for the similar coformers. H-bonding scores and molecular electrostatic potential maps correctly indicated cocrystallization of DDS and the BIPY isomers, with a higher likelihood for 4,4'-BIPY. The molecular conformation influenced the molecular complementarity results, predicting no cocrystallization for 2,2'-BIPY with DDS. The crystal structures of CC22-A and CC44-A were solved from powder X-ray diffraction data. All four cocrystals were fully characterized by a range of analytical techniques, including powder X-ray diffraction, infrared spectroscopy, hot-stage microscopy, thermogravimetric analysis, and differential scanning calorimetry. The two DDS:2,2'-BIPY polymorphs are enantiotropically related, with form B being the stable polymorph at room temperature (RT) and form A being the higher temperature form. Form B is metastable but kinetically stable at RT. The two DDS:4,4'-BIPY cocrystals are stable at room conditions; however, at higher temperatures, CC44-A transforms to CC44-B. The cocrystal formation enthalpy order, derived from the lattice energies, was calculated as follows: CC44-B > CC44-A > CC22-A.
Collapse
|
3
|
Singh M, Barua H, Jyothi VGSS, Dhondale MR, Nambiar AG, Agrawal AK, Kumar P, Shastri NR, Kumar D. Cocrystals by Design: A Rational Coformer Selection Approach for Tackling the API Problems. Pharmaceutics 2023; 15:1161. [PMID: 37111646 PMCID: PMC10140925 DOI: 10.3390/pharmaceutics15041161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Active pharmaceutical ingredients (API) with unfavorable physicochemical properties and stability present a significant challenge during their processing into final dosage forms. Cocrystallization of such APIs with suitable coformers is an efficient approach to mitigate the solubility and stability concerns. A considerable number of cocrystal-based products are currently being marketed and show an upward trend. However, to improve the API properties by cocrystallization, coformer selection plays a paramount role. Selection of suitable coformers not only improves the drug's physicochemical properties but also improves the therapeutic effectiveness and reduces side effects. Numerous coformers have been used till date to prepare pharmaceutically acceptable cocrystals. The carboxylic acid-based coformers, such as fumaric acid, oxalic acid, succinic acid, and citric acid, are the most commonly used coformers in the currently marketed cocrystal-based products. Carboxylic acid-based coformers are capable of forming the hydrogen bond and contain smaller carbon chain with the APIs. This review summarizes the role of coformers in improving the physicochemical and pharmaceutical properties of APIs, and deeply explains the utility of afore-mentioned coformers in API cocrystal formation. The review concludes with a brief discussion on the patentability and regulatory issues related to pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Maan Singh
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Harsh Barua
- Solid State Pharmaceutical Cluster (SSPC), Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, V94T9PX Limerick, Ireland
| | - Vaskuri G. S. Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Madhukiran R. Dhondale
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Amritha G. Nambiar
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashish K. Agrawal
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | | | - Dinesh Kumar
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
4
|
Polymer selection to increase in vitro supersaturation generated by lamotrigine nicotinamide monohydrate cocrystal: An evaluation with predissolved and solid polymers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved Pharmaceutical Properties of Ritonavir through Co-crystallization Approach with Liquid Assisted Grinding Method. Drug Dev Ind Pharm 2022; 47:1633-1642. [PMID: 35156497 DOI: 10.1080/03639045.2022.2042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ritonavir is a BCS class II antiretroviral agent which shows poor aqueous solubility and low oral bioavailability. The cocrystallization approach was selected to overcome these problems and to improve the physicochemical and mechanical properties of Ritonavir. The novel pharmaceutical Ritonavir-L-tyrosine cocrystals (RTC at a molar ratio of 1:1) were synthesized using the liquid assisted grinding (LAG) method. The possibility of molecular interactions between drug and coformer were studied using Gold software version 5.2. The newly formed crystalline solid phase was characterized through Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Solid-State Nuclear magnetic resonance (SSNMR). The improved pharmaceutical properties were confirmed by solubility, dissolution, and powder compaction study. The prepared cocrystals exhibited an 11.24-fold increase in solubility and a 3.73-fold increase in % of drug release at 1 h compared to pure drug. Tabletability and compaction behaviour of the pure drug and cocrystal with added excipients assessed. The tabletability profile of cocrystals showed enhanced tabletting performance as compared to pure drug. The stability studies revealed that cocrystals were stable for at least one month when stored at 40 °C/75% RH and 25 °C/60% RH conditions. The cocrystallization approach was found to be very promising and showed an overall improved performance of Ritonavir.
Collapse
Affiliation(s)
| | - Jignasa K Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | | | - Harsh Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201, USA
| |
Collapse
|
6
|
Braun DE, Hald P, Kahlenberg V, Griesser UJ. Expanding the Solid Form Landscape of Bipyridines. CRYSTAL GROWTH & DESIGN 2021; 21:7201-7217. [PMID: 34867088 PMCID: PMC8640990 DOI: 10.1021/acs.cgd.1c01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Two bipyridine isomers (2,2'- and 4,4'-), used as coformers and ligands in coordination chemistry, were subjected to solid form screening and crystal structure prediction. One anhydrate and a formic acid disolvate were crystallized for 2,2'-bipyridine, whereas multiple solid-state forms, anhydrate, dihydrate, and eight solvates with carboxylic acids, including a polymorphic acetic acid disolvate, were found for the 4,4'-isomer. Seven of the solvates are reported for the first time, and structural information is provided for six of the new solvates. All twelve solid-state forms were investigated comprehensively using experimental [thermal analysis, isothermal calorimetry, X-ray diffraction, gravimetric moisture (de)sorption, and IR spectroscopy] and computational approaches. Lattice and interaction energy calculations confirmed the thermodynamic driving force for disolvate formation, mediated by the absence of H-bond donor groups of the host molecules. The exposed location of the N atoms in 4,4'-bipyridine facilitates the accommodation of bigger carboxylic acids and leads to higher conformational flexibility compared to 2,2'-bipyridine. For the 4,4'-bipyridine anhydrate ↔ hydrate interconversion hardly any hysteresis and a fast transformation kinetics are observed, with the critical relative humidity being at 35% at room temperature. The computed anhydrate crystal energy landscapes have the 2,2'-bipyridine as the lowest energy structure and the 4,4'-bipyridine among the low-energy structures and suggest a different crystallization behavior of the two compounds.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Patricia Hald
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Volker Kahlenberg
- Institute
of Mineralogy and Petrography, University
of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute
of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
8
|
Kuang W, Ji S, Wang X, Zhang J, Lan P. Relationship between crystal structures and physicochemical properties of lamotrigine cocrystal. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Queiroz ALP, Rodrigues M, Zeglinski J, Crean AM, Sarraguça MC, Vucen S. Determination of co-crystal phase purity by mid infrared spectroscopy and multiple curve resolution. Int J Pharm 2021; 595:120246. [PMID: 33482224 DOI: 10.1016/j.ijpharm.2021.120246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
Multivariate Curve Resolution (MCR) was used to determine the phase purity of pharmaceutical co-crystals from mid infrared spectra. An in-silico coformer screening was used to choose one of ten potential coformers. This analysis used quantum chemistry simulation to predict which coformers are thermodynamically inclined to form cocrystals with the model drug, hydrochlorothiazide. The coformer chosen was nicotinamide. An experimental solvent screening by ultrasound assisted slurry co-crystallization was performed to evaluate the capacity of the method to determine phase purity. Afterwards, slurry and slow evaporation co-crystallizations were performed at 10, 25, and 40 °C using 7 solvent systems, and two levels of agitation for the evaporation co-crystallization (on and off). Mid infrared spectroscopy (MIRS) analysis of the products of these co-crystallizations was used to develop an MCR model to determine co-crystal phase purity. The MCR results were compared with a reference co-crystal. Experimental design (DoE) was used to investigate the effect of solvents, temperature, and agitation on the purity of co-crystals produced by slurry and evaporation co-crystallization. DoE revealed that evaporation co-crystallization with agitating at 65 rpm formed co-crystals with greater phase purity. The optimal temperature varied with the solvent used.
Collapse
Affiliation(s)
- Ana Luiza P Queiroz
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland; APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jacek Zeglinski
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Abina M Crean
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland
| | - Mafalda Cruz Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sonja Vucen
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Abdelmonem R, Azer MS, Makky A, Zaghloul A, El-Nabarawi M, Nada A. Development, Characterization, and in-vivo Pharmacokinetic Study of Lamotrigine Solid Self-Nanoemulsifying Drug Delivery System. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4343-4362. [PMID: 33116420 PMCID: PMC7585523 DOI: 10.2147/dddt.s263898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022]
Abstract
Purpose This study aimed to prepare solid self-nanoemulsified drug delivery system (S-SNEDDS) of lamotrigine (LMG) for enhancing its dissolution and oral bioavailability (BA). Methods Nineteen liquid SNEDDS were prepared (R1-R19) using D-optimal design with different ratios of oil, surfactant (S), and cosurfactant (Cos). The formulations were characterized regarding robustness to dilution, droplet size, thermodynamic stability testing, self-emulsification time, in-vitro release in 0.1 N HCl and phosphate buffer (PB; pH 6.8). Design Expert® 11 software was used to select the optimum formulations. Eight S-SNEDDS were prepared (S1-S8) using 23 factorial design, and characterized by differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and scanning electron microscopy (SEM). The optimum formulation was chosen regarding in-vitro drug released in 0.1 N HCl and PB, compared to pure LMG and commercial tablet (Lamictal®). The BA of LMG from the optimized S-SNEDDS formulation was evaluated in rabbits compared to pure LMG and Lamictal®. Results The optimized S-SNEDDS was S2, consisting of R9 adsorbed on Aeroperl® 300 in a ratio of 1:1, with the best results regarding in-vitro drug released in 0.1 N HCl at 15 min (100%) compared to pure LMG (73.40%) and Lamictal® (79.43%), and in-vitro drug released in PB at 45 min (100%) compared to pure LMG (30.46%) and Lamictal® (92.08%). DSC, PXRD, and SEM indicated that LMG was molecularly dispersed within the solid nano-system. The BA of S2 was increased 2.03 and 1.605 folds compared to pure LMG, and Lamictal®, respectively. Conclusion S2 is a promising S-SNEDDS formulation. It can be a potential carrier for improving dissolution, and BA of LMG.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Marian Sobhy Azer
- Department of Pharmaceutics, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Amna Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdelazim Zaghloul
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Nada
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
11
|
Du Y, Xue J, Hong Z. Raman and Terahertz Spectroscopic Characterization of Solid-state Cocrystal Formation within Specific Active Pharmaceutical Ingredients. Curr Pharm Des 2020; 26:4829-4846. [PMID: 32445442 DOI: 10.2174/1381612826666200523173448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
Abstract
Cocrystallization of specific active pharmaceutical ingredients (APIs) in the solid-state phase is becoming a feasible way to improve their corresponding physicochemical properties and ultimate bioavailability without making and breaking any covalent bonds within them. Many recent reports deal with the characterization and analysis topics of pharmaceutical APIs-based cocrystals. In this mini-review, we will focus on the recent steady-state and time-dependent spectroscopic investigation into the cocrystallization of specific APIs based on both Raman and emerging terahertz spectroscopy in pharmaceutical fields. Distinctive spectral, structural and also kinetic information of pharmaceutical APIs-based cocrystals are obtained and discussed, which would highlight the potential of vibrational spectroscopy as an attractive technique for various drug research and development during cocrystallization of specific APIs.
Collapse
Affiliation(s)
- Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou City, Zhejiang Province, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province, China
| | - Zhi Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
12
|
Kuang W, Ji S, Wei Y, Zhang J, Lan P. A new 1 : 1 cocrystal of lamotrigine and 1,2,3,6-hydrophthalimide: discovery, characterization, and construction of ternary phase diagrams. CrystEngComm 2020. [DOI: 10.1039/d0ce00178c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A 1 : 1 cocrystal of lamotrigine (LAM) with 1,2,3,6-tetrahydrophthalimide (HPHT) was first successfully synthesized. The ternary phase diagram of the cocrystal was constructed, and its stability and dissolution were determined.
Collapse
Affiliation(s)
- Wenjie Kuang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification Guangxi University for Nationalities
- Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
| | - Shaochang Ji
- Guangxi Tobacco Monopoly Bureau
- Nanning 530006
- China
| | | | - Jinyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification Guangxi University for Nationalities
- Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and their Modification Guangxi University for Nationalities
- Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes
- College of Chemistry and Chemical Engineering
- Guangxi University for Nationalities
- Nanning 530006
| |
Collapse
|
13
|
Ouyang J, Zhou L, Liu Z, Xiao S, Huang X, Heng JY. Solubility determination and modelling of benzamide in organic solvents at temperatures from 283.15 K and 323.15 K, and ternary phase diagrams of benzamide-benzoic acid cocrystals in ethanol at 298.15 K. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110885] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Évora AO, Castro RA, Maria TM, Ramos Silva M, Canotilho J, Eusébio MES. Lamotrigine: Design and synthesis of new multicomponent solid forms. Eur J Pharm Sci 2019; 129:148-162. [PMID: 30639400 DOI: 10.1016/j.ejps.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022]
|
15
|
A strategy to improve the oral availability of baicalein: The baicalein-theophylline cocrystal. Fitoterapia 2018; 129:85-93. [DOI: 10.1016/j.fitote.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
|
16
|
Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018; 10:E74. [PMID: 29937483 PMCID: PMC6161168 DOI: 10.3390/pharmaceutics10030074] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decades, a large number of drugs as well as drug candidates with poor dissolution characteristics have been witnessed, which invokes great interest in enabling formulation of these active ingredients. Poorly water-soluble drugs, especially biopharmaceutical classification system (BCS) II ones, are preferably designed as oral dosage forms if the dissolution limit can be broken through. Minimizing a drug’s size is an effective means to increase its dissolution and hence the bioavailability, which can be achieved by specialized dispersion techniques. This article reviews the most commonly used dispersion techniques for pharmaceutical processing that can practically enhance the dissolution and bioavailability of poorly water-soluble drugs. Major interests focus on solid dispersion, lipid-based dispersion (nanoencapsulation), and liquisolid dispersion (drug solubilized in a non-volatile solvent and dispersed in suitable solid excipients for tableting or capsulizing), covering the formulation development, preparative technique and potential applications for oral drug delivery. Otherwise, some other techniques that can increase the dispersibility of a drug such as co-precipitation, concomitant crystallization and inclusion complexation are also discussed. Various dispersion techniques provide a productive platform for addressing the formulation challenge of poorly water-soluble drugs. Solid dispersion and liquisolid dispersion are most likely to be successful in developing oral dosage forms. Lipid-based dispersion represents a promising approach to surmounting the bioavailability of low-permeable drugs, though the technique needs to traverse the obstacle from liquid to solid transformation. Novel dispersion techniques are highly encouraged to develop for formulation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Huijie Xing
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Yue Zhao
- Institute of Laboratory Animals, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| | - Zhiguo Ma
- Department of Pharmaceutics, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, China.
| |
Collapse
|
17
|
Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm 2018; 547:404-420. [PMID: 29890258 DOI: 10.1016/j.ijpharm.2018.06.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Cocrystals are homogenous (single-phase) crystalline structures composed by two or more components in a definite stoichiometric ratio bonded together by noncovalent bonds. Pharmaceutical industry has been showing interest in cocrystals due to their ability to improve active pharmaceutical ingredients (API's) properties, such as solubility, dissolution, bioavailability, stability and processability. The necessity for high-throughput screening methods and methods capable of producing cocrystals in an industrial scale still hinders the use of cocrystals by the pharmaceutical industry. The aim of this review is to present an extensive overview of the cocrystallization methods, focusing in the specificities of each technique, its advantages and disadvantages. The review is divided into solvent-based and solvent-free methods. The most appropriate methods to the different stages of cocrystals manufacture, from the screening phase to industrial production are identified. The use of continuous and scalable methods in cocrystal production as well as the implementation of quality-by-design and process analytical technology concepts are also addressed.
Collapse
Affiliation(s)
- Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Bárbara Baptista
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Almeida Lopes
- Research Institute for Medicines (iMed.Lisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mafalda Cruz Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|