1
|
Boscolo O, Flor S, Salvo L, Dobrecky C, Höcht C, Tripodi V, Moretton M, Lucangioli S. Formulation and Characterization of Ursodeoxycholic Acid Nanosuspension Based on Bottom-Up Technology and Box-Behnken Design Optimization. Pharmaceutics 2023; 15:2037. [PMID: 37631251 PMCID: PMC10458560 DOI: 10.3390/pharmaceutics15082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is a therapeutic agent used for the treatment of cholestatic hepatobiliary diseases in pediatric patients. It is a bile acid that presents high lipophilicity, and it belongs to Class II of the Biopharmaceutical Classification System (BCS), which exhibits low water solubility and high intestinal permeability, which leads to poor oral absorption. The objective of this work was to design and optimize UDCA nanosuspensions by means of the precipitation-ultrasonication method to improve the solubility, dissolution, and oral bioavailability of UDCA. METHODS A three-level, three-factor Box-Behnken design was used to optimize formulation variables and obtain uniform, small-particle-size UDCA nanosuspensions. The independent variables were: stabilizer percentage (X1), amplitude (X2), and sonication time (X3), and the dependent variable was the particle size (Y1). In the precipitation-ultrasonication method, UDCA was dissolved in acetone:PEG 400 (1:1 v/v) and quickly incorporated into the antisolvent (pre-cooled aqueous dispersion of HPMC E-15 0.3%), by means of intense sonication at 50 W for 5 min, controlling temperature through an ice water bath. The lyophilization efficacy was evaluated by means of a cryoprotective efficacy test, working with 10% maltose at -80 °C. The nanosuspensions were characterized by dynamic light scattering (DLS), X-ray diffraction, and scanning electron microscopy (SEM). The physicochemical stability was determined at 25 °C and 4 °C at 7, 14, 30, and 60 days, and the UDCA content was analyzed via HPLC-UV. An in vitro dissolution assay and an oral bioavailability study were performed in male Wistar rats. RESULTS A significant impact was achieved in the optimized nanosuspension with 0.3% (stabilizer), 50 W (amplitude), and 5 min (sonication time), with a particle size of 352.4 nm, PDI of 0.11, and zeta potential of -4.30 mV. It presented adequate physicochemical stability throughout the study and the UDCA content was between 90% and 110%. In total, 86% of UDCA was dissolved in the in vitro dissolution test. The relative oral bioavailability was similar without significant statistical differences when comparing the lyophilized nanosuspension and the commercial tablet, the latter presenting a more erratic behavior. The pharmacokinetic parameters of the nanosuspension and the commercial tablet were Tmax (1.0 ± 0.9 h vs. 2.0 ± 0.8 h, respectively), Cmax (0.558 ± 0.118 vs. 0.366 ± 0.113 µM, respectively), ΔCmax (0.309 ± 0.099 vs. 0.232 ± 0.056, respectively), AUC (4.326 ± 0.471 vs. 2.188 ± 0.353 µg/mL.h, respectively, p < 0.02), and IAUC0-24h (2.261 ± 0.187 µg/mL.h vs. 1.924 ± 0.440 µg/mL.h, respectively). CONCLUSIONS The developed nanosuspension presents an appropriate dosage and administration for pediatric patients. On the other hand, it exhibits an adequate absorption and UDCA oral bioavailability.
Collapse
Affiliation(s)
- Oriana Boscolo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Sabrina Flor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Leandro Salvo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
| | - Cecilia Dobrecky
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires C1113AAD, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires C1113AAD, Argentina
| | - Valeria Tripodi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires C1113AAD, Argentina
| | - Marcela Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Silvia Lucangioli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires C1113AAD, Argentina; (O.B.); (S.F.); (L.S.); (C.D.); (M.M.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina; (C.H.); (V.T.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
2
|
Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate. Eur J Pharm Sci 2023; 185:106425. [PMID: 36934992 DOI: 10.1016/j.ejps.2023.106425] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The drug nanosuspensions is a universal formulation approach for improved drug delivery of hydrophobic drugs and one the most promising approaches for increasing the biopharmaceutical performance of poorly water-soluble drug substances, especially for nature products. This review aimed to summarize the nanosuspensions preparation approaches and the main technological difficulties encountered in nanosuspensions development, such as guidelines for stabilizers screening, in vivo fate of the intravenously administrated nanosuspensions, and how to realize the intravenously target delivery was reviewed. Furthermore, challenges of nanosuspensions for the nature products delivery also was discussed and commented. Therefore, it hoped to provide reference and assistance for the nanosuspensions production, stabilizers usage, and predictability of in vivo fate and controllability of targeting delivery of the nature products nanosuspensions.
Collapse
Affiliation(s)
- Yingying Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P R China
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yancai Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P R China
| |
Collapse
|
3
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
4
|
Aegerter N, Luijten A, Massella D, Ermanni P. Production of highly concentrated commodity thermoplastic NP suspensions with 3D printed confined impinging jet mixers and efficient downstream operations. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Gao X, Gong J, Cai Y, Wang J, Wen J, Peng L, Ji H, Jiang S, Guo D. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. Int J Biol Macromol 2021; 188:855-862. [PMID: 34411614 DOI: 10.1016/j.ijbiomac.2021.08.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
As immune adjuvants assisting vaccines, nanoparticle delivery systems have been widely exploited. Squalene, the major ingredient of approved adjuvant MF59, has great potential in activating immune responses. In the current study, model antigen ovalbumin (OVA) was encapsulated into squalene-based nanostructured lipid carriers (NLCs), and the chitosan, a cationic polysaccharide, was used for modifying nanoparticles to develop a functionalized and cationic nanoparticle delivery system (OVA-csNLCs). Firstly, the optimal formulation of csNLCs was successfully screened out, and had hydrodynamic diameter of 235.80 ± 5.99 nm and zeta potential of 34.90 ± 6.95 mV. Then, the generated OVA-csNLCs had no significant difference in hydrodynamic diameter and exhibited lower zeta potential of 19.03 ± 0.31 mV and high encapsulation efficiency of 83.4%. Sucrose (10%, w/w) was selected as optimal lyoprotectant, exhibiting good stability of OVA-csNLCs in the form of freeze-dried powder. More importantly, the OVA-csNLCs effectively promoted OVA antigen uptake by macrophage, significantly enhanced the level of OVA-specific IgG, and induced a Th2-based immune response in vivo. Furthermore, mice immunization experiment demonstrated that OVA-csNLCs had well biocompatibility and facilitated spleen lymphocytes proliferation. Above findings indicate that chitosan modified squalene nanostructured lipid carriers show promise as antigen delivery system and an open adjuvant platform.
Collapse
Affiliation(s)
- Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Cai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China
| | - Jia Wen
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
6
|
Thermal Stability and Dynamic Mechanical Properties of Poly( ε-caprolactone)/Chitosan Composite Membranes. MATERIALS 2021; 14:ma14195538. [PMID: 34639932 PMCID: PMC8509319 DOI: 10.3390/ma14195538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Poly (ε-caprolactone) (PCL) and chitosan (CS) are widely used as biodegradable and biocompatible polymers with desirable properties for tissue engineering applications. Composite membranes (CS-PCL) with various blend ratios (CS:PCL, w/w) of 0:100, 5:95, 10:90, 15:85, 20:80, and 100:0 were successfully prepared by lyophilization. The thermal stabilities of the CS-PCL membranes were systematically characterized by thermogravimetric analysis (TG), dynamic thermogravimetry (DTG), and differential scanning calorimetry (DSC). It was shown that the blend ratio of PCL and CS had a significant effect on the thermal stability, hydrophilicity, and dynamic mechanical viscoelasticity of the CS-PCL membranes. All the samples in the experimental range exhibited high elasticity at low temperature and high viscosity at high temperatures by dynamic mechanical thermal analysis (DMTA). The performances of the CS-PCL membranes were at optimum levels when the blend ratio (w/w) was 10:90. The glass transition temperature of the CS-PCL membranes increased from 64.8 °C to 76.6 °C compared to that of the pure PCL, and the initial thermal decomposition temperature reached 86.7 °C. The crystallinity and porosity went up to 29.97% and 85.61%, respectively, while the tensile strength and elongation at the breakage were 20.036 MPa and 198.72%, respectively. Therefore, the 10:90 (w/w) blend ratio of CS/PCL is recommended to prepare CS-PCL membranes for tissue engineering applications.
Collapse
|
7
|
Talebi A, Labbaf S, Karimzadeh F, Masaeli E, Nasr Esfahani MH. Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair. ACS Biomater Sci Eng 2020; 6:4214-4224. [DOI: 10.1021/acsbiomaterials.0c00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|