1
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
Jiang XS, Fu BL, Yang XX, Qin HY. TNF-α Mediated the Disruption of Hepatic Tight Junction Expression in Blood-Biliary Barrier of Colitis via Downregulating PI3K/AKT Signaling Pathway. Biol Pharm Bull 2023; 46:1769-1777. [PMID: 37899248 DOI: 10.1248/bpb.b23-00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Hepatocyte tight junctions (TJ) constituted blood-biliary barrier is the most important hepatic barrier for separating bile from the bloodstream, disruption or dysfunction of TJ barrier is involved in hepatobiliary manifestations of colitis, but the underlying mechanism is still not clear. This study aims to investigate the effect and underlying mechanism of tumor necrosis factor alpha (TNF-α) on hepatic TJ protein expression in blood-biliary barrier and identify its role in the pathogenesis of acute colitis-related cholestasis. Acute colitis rat model was induced by trinitrobenzene sulfonic acid (TNBS) intra-colonic administration. TJs expression of blood-biliary barrier was tested in colitis rats, the serum TNF-α level was also determined in order to elucidate the correlation of TNF-α and TJs. HepaRG cells were used to investigate the effect of TNF-α on TJs, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway were also evaluated in rats and TNF-α treated HepaRG cells. Acute colitis was induced in rats at 5 d post TNBS, which is accompanied with cholestasis-like alteration. Serum TNF-α level was increased in colitis rats and positively correlated with the alteration of total bile acids and bilirubin, marked decrease in TJs was found in TNF-α treated HepaRG cells and the rats, down-regulated PI3K/AKT signaling pathway were also identified in TNF-α treated HepaRG cells and the rats. The study concluded that serum TNF-α mediated the down-regulation of PI3K/AKT signaling pathway, which contributed to the reduction of TJ protein expression in acute colitis-related intrahepatic cholestasis. These findings suggest that TNF-α plays an important role in the pathogenesis of intrahepatic cholestasis of colitis.
Collapse
Affiliation(s)
| | - Bi-le Fu
- The First Clinical Medical College, Lanzhou University
- College of Pharmacy, Lanzhou University
| | - Xin-Xin Yang
- The First Clinical Medical College, Lanzhou University
| | - Hong-Yan Qin
- Department of Pharmacy, First Hospital of Lanzhou University
| |
Collapse
|
3
|
Xiang D, Liu Y, Zu Y, Yang J, He W, Zhang C, Liu D. Calculus Bovis Sativus alleviates estrogen cholestasis-induced gut and liver injury in rats by regulating inflammation, oxidative stress, apoptosis, and bile acid profiles. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115854. [PMID: 36273746 DOI: 10.1016/j.jep.2022.115854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural Calculus Bovis (NCB) is a traditional Chinese medicine used for anti-inflammation, treating fever, pain, sedation, and recovering hepatobiliary function. Calculus Bovis Sativus (CBS), produced from in vitro artificial cultivation by bioengineering techniques, acts as an ideal substitute for NCB when treating various diseases. AIM OF THE STUDY Gut-liver injury is an important pathological feature of several cholestatic liver diseases, including estrogen-induced cholestasis (EIC). The strong link between cholestatic liver injury and intestinal damage emphasizes the need of considering gut-liver integrity during treatment. The purpose of this study is to look into the pharmacological activities of CBS on EIC-induced gut and liver damage. MATERIALS AND METHODS EIC-induced cholestatic rats were given oral gavage daily for five days with or without CBS (150 mg/kg). The liver/body weight, serum biochemistry, and tissue histopathology were then evaluated. Quantitative real-time PCR, Western blot analyses, and immunofluorescence were used to determine the gene expression associated with pathological alterations of the liver and intestine in EIC-induced cholestatic rats. Bile acid profiles within enterohepatic circulation were detected by liquid chromatography-mass spectrometry. RESULTS CBS significantly reduced relative liver weight, restored serum biochemistry levels, and improved the hepatic and intestinal pathological damage in EIC model rats. CBS reduced EIC-induced hepatic inflammation by inactivation of the NF-κB signaling and inhibition of TNFα, IL-1β, and IL-6 expression. CBS alleviated EIC-induced hepatic and intestinal oxidative stress by regulating Nrf2-GCLM/GCLC and Nrf2-HO-1 pathways, respectively. CBS treatment upregulated Bcl-2 and downregulated Bax and cleaved caspase3 to improve EIC-induced hepatic and intestinal cell apoptosis. Additionally, CBS reversed the disorders of bile acid profiles in the enterohepatic circulation by reducing bile acid accumulation in the liver and plasma and increasing bile excretion and intestinal reabsorption of bile acids. CONCLUSION CBS alleviates EIC-induced hepatic and intestinal injury through regulating inflammation, oxidative stress, apoptosis, and bile acid profiles. These results suggest that CBS or drugs targeting the gut-liver axis may be effective therapeutic agents for cholestasis.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanan Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430030, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Zhao JQ, Zhao Z, Zhang C, Sun JX, Liu FJ, Yu T, Jiang Y, Li HJ. Long-term oral administration of Epimedii Folium induced cholestasis in mice by interfering with bile acid transport. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115254. [PMID: 35381309 DOI: 10.1016/j.jep.2022.115254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedii Folium (EF) is a common traditional Chinese medicine that functions as a tonifying kidney yang to strengthen bones and muscles and dispel wind dampness (limb pain, lethargy, nausea, anorexia, and loose stools). Several studies have reported the potential risk of cholestatic liver damage from EF use; however, there have been few investigations of EF-induced cholestasis, particularly the underlying mechanisms. AIMS OF THE STUDY The purpose of this study was to evaluate the risk of EF-induced cholestasis in vivo and to explore the mechanisms of action. MATERIALS AND METHODS ICR mice were orally administered a water extract of EF (WEF) in doses of 6.5 and 19.5 g/kg/day for 14 weeks. Liver-to-body weight ratios, body weight, histopathological examination, and biochemical analyses were performed to assess WEF-induced cholestasis in the mice. Genes associated with bile acid (BA) metabolism and transport, including sodium taurocholate cotransporting polypeptide (NTCP), cytochrome P450 8B1 (CYP8B1), bile-salt export pump (BSEP), multidrug resistance P-glycoproteins 1 (MDR1), and farnesoid X receptor (FXR), were measured at the transcript and protein levels to investigate the potential mechanisms through which cholestasis is aroused by EF. RESULTS After administration of WEF for 14 weeks, mice in the high-dose WEF group showed poor health with an increased liver-to-body weight ratio as well as higher serum aminotransferase, alkaline phosphatase, direct bilirubin, and total BA levels. Compared with the control group, mRNA expression of NTCP and cholesterol 7a-hydroxylase (CYP7A1) increased, and levels of BSEP, MDR1, multidrug resistance-associated protein 2, and multidrug resistance-associated protein 3 decreased in the WEF-treated group. NTCP, BSEP, MDR1, and CYP8B1 showed similar mRNA and protein expression trends. CONCLUSION We demonstrated that the long-term oral administration of WEF causes cholestatic liver injury in mice, which is consistent with reported clinical cases. Furthermore, we found that the destruction of BA metabolism and transport is involved in WEF-induced cholestasis. The fine-scale molecular mechanisms of WEF-induced cholestasis and the active compounds of EF need further study.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Zhen Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
5
|
Alaei Faradonbeh F, Lastuvkova H, Cermanova J, Hroch M, Nova Z, Uher M, Hirsova P, Pavek P, Micuda S. Multidrug Resistance-Associated Protein 2 Deficiency Aggravates Estrogen-Induced Impairment of Bile Acid Metabolomics in Rats. Front Physiol 2022; 13:859294. [PMID: 35388287 PMCID: PMC8979289 DOI: 10.3389/fphys.2022.859294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2) mediates biliary secretion of anionic endobiotics and xenobiotics. Genetic alteration of Mrp2 leads to conjugated hyperbilirubinemia and predisposes to the development of intrahepatic cholestasis of pregnancy (ICP), characterized by increased plasma bile acids (BAs) due to mechanisms that are incompletely understood. Therefore, this study aimed to characterize BA metabolomics during experimental Mrp2 deficiency and ICP. ICP was modeled by ethinylestradiol (EE) administration to Mrp2-deficient (TR) rats and their wild-type (WT) controls. Spectra of BAs were analyzed in plasma, bile, and stool using an advanced liquid chromatography–mass spectrometry (LC–MS) method. Changes in BA-related genes and proteins were analyzed in the liver and intestine. Vehicle-administered TR rats demonstrated higher plasma BA concentrations consistent with reduced BA biliary secretion and increased BA efflux from hepatocytes to blood via upregulated multidrug resistance-associated protein 3 (Mrp3) and multidrug resistance-associated protein 4 (Mrp4) transporters. TR rats also showed a decrease in intestinal BA reabsorption due to reduced ileal sodium/bile acid cotransporter (Asbt) expression. Analysis of regulatory mechanisms indicated that activation of the hepatic constitutive androstane receptor (CAR)-Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by accumulating bilirubin may be responsible for changes in BA metabolomics in TR rats. Ethinylestradiol administration to TR rats further increased plasma BA concentrations as a result of reduced BA uptake and increased efflux via reduced Slco1a1 and upregulated Mrp4 transporters. These results demonstrate that Mrp2-deficient organism is more sensitive to estrogen-induced cholestasis. Inherited deficiency in Mrp2 is associated with activation of Mrp3 and Mrp4 proteins, which is further accentuated by increased estrogen. Bile acid monitoring is therefore highly desirable in pregnant women with conjugated hyperbilirubinemia for early detection of intrahepatic cholestasis.
Collapse
Affiliation(s)
- Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Zuzana Nova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Uher
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Stanislav Micuda,
| |
Collapse
|
6
|
Wu S, Ji X, Wang J, Wu H, Han J, Zhang H, Xu J, Qian M. Fungicide bromuconazole has the potential to induce hepatotoxicity at the physiological, metabolomic and transcriptomic levels in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116940. [PMID: 33789219 DOI: 10.1016/j.envpol.2021.116940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Bromuconazole (BROMU), a representative triazole fungicide, has been widely used in agriculture for its low cost and highly efficiency against various fungi. BROMU residue was often detected in the environment and food chain, even though there is indication of health risk to animals, and in humans. However, the data related to the toxicity of BROMU in animals remains unclear, and the mechanism is still not fully elucidated. Here, male adult rats were exposed to 0, 13.8, 32.8 and 65.6 mg/kg/d of BROMU for 10 days by oral gavage. It was observed that short time BROMU exposure not only caused liver histological damage, including vacuolar degeneration of hepatocytes with pyknotic nuclei, but also changed the levels of some hepatic physiological parameters, including aspartate transaminase (AST), triglyceride (TG), pyruvate and total cholesterol (TC), indicating that BROMU causes hepatotoxicity in rats. In addition, according to the transcriptomics and metabolomics analysis, a total of 58 metabolites and 259 genes significantly changed in the high-dose BROMU treated group. Although several different pathways are involved, lipid metabolism- and bile acids metabolism-related pathways were highlighted in both metabolomics and transcriptomics analysis. More importantly, further validation had proven that BROMU could not only interact with peroxisome proliferator-activated receptor γ (PPAR-γ), but also significantly decrease its protein and gene expression in the liver, supporting that BROMU decreased the TG synthesis via inhibiting the PPAR-γ pathway. These results clearly showed that BROMU exposure could result in hepatotoxicity at metabolomic and transcriptomic level in rats. These observations could provide some important steps toward understanding the mechanism underlying BROMU-induced mammalian toxicity.
Collapse
Affiliation(s)
- Shuchun Wu
- Hangzhou Medical College, Hangzhou, China; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaofeng Ji
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Jianmei Wang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Huizhen Wu
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Jianzhong Han
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Jie Xu
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China
| | - Mingrong Qian
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, China.
| |
Collapse
|
7
|
Xiang D, Yang J, Xu Y, Lan L, Li G, Zhang C, Liu D. Estrogen cholestasis induces gut and liver injury in rats involving in activating PI3K/Akt and MAPK signaling pathways. Life Sci 2021; 276:119367. [PMID: 33775691 DOI: 10.1016/j.lfs.2021.119367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Estrogen and its metabolites often lead to intrahepatic cholestasis in susceptible women with pregnancy, administration of oral contraceptives and postmenopausal hormone replacement therapy. Recently, dysfunction of the gut-liver axis has been suggested to play a pivotal role in the progression of cholestasis, but details about estrogen cholestasis (EC)-induced gut and liver injury are still largely unknown. This study aims to gain insight into EC-induced gut and liver injury and cell signaling implicated. METHODS Male rats were exposed to 5 and 10 mg/kg of 17α-ethinylestradiol via subcutaneous injection for 5 successive days to simulate human EC. RESULTS By detection of these estrogen cholestatic rats, we found that EC induced inflammation in the liver but not in the intestine through activating NF-κB signaling pathway. EC strongly induced oxidative stress in both the liver and intestine, and activated the hepatic Nrf2/Gclm/Gclc pathway and the intestinal Nrf2/Ho-1 pathway, respectively, for adaptively regulating oxidative stress. EC increased cell apoptosis in both the liver and intestine. Additionally, EC elevated phosphorylation of Akt, ERK1/2, and p38 in the liver and increased phosphorylation of p38 in the intestine. CONCLUSIONS EC induces liver inflammation, both gut and liver oxidative stress and apoptosis, involving in activating PI3K/Akt and MAPK signaling pathways. Investigation of EC-induced gut and liver injury contributes to the development of new potential therapeutic strategies.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Yang J, Xiang D, Xiang D, He W, Liu Y, Lan L, Li G, Jiang C, Ren X, Liu D, Zhang C. Baicalin Protects Against 17α-Ethinylestradiol-Induced Cholestasis via the Sirtuin 1/Hepatic Nuclear Receptor-1α/Farnesoid X Receptor Pathway. Front Pharmacol 2020; 10:1685. [PMID: 32116682 PMCID: PMC7026019 DOI: 10.3389/fphar.2019.01685] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogen-induced cholestasis (EIC) is characterized by impairment of bile flow and accumulated bile acids (BAs) in the liver, always along with the liver damage. Baicalin is a major flavonoid component of Scutellaria baicalensis, and has been used in the treatment of liver diseases for many years. However, the role of baicalin in EIC remains to be elucidated. In this study, we demonstrated that baicalin showed obvious hepatoprotective effects in EIC rats by reducing serum biomarkers and increasing the bile flow rate, as well as by alleviating liver histology and restoring the abnormal composition of hepatic BAs. In addition, baicalin protected against estrogen-induced liver injury by up-regulation of the expression of hepatic efflux transporters and down-regulation of hepatic uptake transporters. Furthermore, baicalin increased the expression of hepatic BA synthase (CYP27A1) and metabolic enzymes (Bal, Baat, Sult2a1) in EIC rats. We showed that baicalin significantly inhibited hepatic inflammatory responses in EIC rats through reducing elevated levels of TNF-α, IL-1β, IL-6, and NF-κB. Finally, we confirmed that baicalin maintains hepatic BA homeostasis and alleviates inflammation through sirtuin 1 (Sirt1)/hepatic nuclear receptor-1α (HNF-1α)/farnesoid X receptor (FXR) signaling pathway. Thus, baicalin protects against estrogen-induced cholestatic liver injury, and the underlying mechanism involved is related to activation of the Sirt1/HNF-1α/FXR signaling pathway.
Collapse
Affiliation(s)
- Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daochun Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Jiang
- College of Pharmacy, Jilin University, Changchun, China
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Obeticholic Acid Protects against Gestational Cholestasis-Induced Fetal Intrauterine Growth Restriction in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7419249. [PMID: 31827696 PMCID: PMC6885290 DOI: 10.1155/2019/7419249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Gestational cholestasis is a common disease and is associated with adverse pregnancy outcomes. However, there are still no effective treatments. We investigated the effects of obeticholic acid (OCA) on fetal intrauterine growth restriction (IUGR) during 17α-ethynylestradiol- (E2-) induced gestational cholestasis in mice. All pregnant mice except controls were subcutaneously injected with E2 (0.625 mg/kg) daily from gestational day (GD) 13 to GD17. Some pregnant mice were orally administered with OCA (5 mg/kg) daily from GD12 to GD17. As expected, OCA activated placental, maternal, and fetal hepatic FXR signaling. Additionally, exposure with E2 during late pregnancy induced cholestasis, whereas OCA alleviated E2-induced cholestasis. Gestational cholestasis caused reduction of fetal weight and crown-rump length and elevated the incidence of IUGR. OCA decreased the incidence of IUGR during cholestasis. Interestingly, OCA attenuated reduction of blood sinusoid area in placental labyrinth layer and inhibited downregulation of placental sodium-coupled neutral amino acid transporter- (SNAT-) 2 during cholestasis. Additional experiment found that OCA attenuated glutathione depletion and lipid peroxidation in placenta and fetal liver and placental protein nitration during cholestasis. Moreover, OCA inhibited the upregulation of placental NADPH oxidase-4 and antioxidant genes during cholestasis. OCA activated antioxidant Nrf2 signaling during cholestasis. Overall, we demonstrated that OCA treatment protected against gestational cholestasis-induced placental dysfunction and IUGR through suppressing placental oxidative stress and maintaining bile acid homeostasis.
Collapse
|
10
|
Dong R, Wang J, Gao X, Wang C, Liu K, Wu J, Liu Z, Sun H, Ma X, Meng Q. Yangonin protects against estrogen–induced cholestasis in a farnesoid X receptor-dependent manner. Eur J Pharmacol 2019; 857:172461. [DOI: 10.1016/j.ejphar.2019.172461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
|
11
|
Wang J, Fu T, Dong R, Wang C, Liu K, Sun H, Huo X, Ma X, Yang X, Meng Q. Hepatoprotection of auraptene from the peels of citrus fruits against 17α-ethinylestradiol-induced cholestasis in mice by activating farnesoid X receptor. Food Funct 2019; 10:3839-3850. [DOI: 10.1039/c9fo00318e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auraptene protects against estrogen-induced cholestasis in mice.
Collapse
|
12
|
Li M, Hu X, Xu Y, Hu X, Zhang C, Pang S. A Possible Mechanism of Metformin in Improving Insulin Resistance in Diabetic Rat Models. Int J Endocrinol 2019; 2019:3248527. [PMID: 31737069 PMCID: PMC6815615 DOI: 10.1155/2019/3248527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/11/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes has become one of the most common diseases worldwide, causing a serious social burden. As a first-line treatment for diabetes, metformin can effectively improve insulin resistance. It has been reported that 12α-hydroxylated BA (mainly CA) is associated with insulin resistance. The purpose of this study was to analyze the changes in CA and possible signaling mechanisms in diabetic rats after metformin intervention. METHODS HepG2 cells were cultured after adding different concentrations of metformin. The cell viability was measured using CCK8 kit, and the expression of FXR, MAFG, and CYP8B1 in cells was detected by WB. The rat models of type 2 diabetes were induced by low-dose streptozotocin by feeding a high-fat diet, and the control rats (CON) were fed on normal food; the diabetic rats (DM) were given a high-fat diet without supplementation with metformin, while the metformin-treated diabetic rats (DM + MET) were given a high-fat diet and supplemented with metformin. Biochemical parameters were detected at the end of the test. Expression levels of FXR, CYP8B1, and MAFG were assessed by WB. Serum CA were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS In HepG2 cells, metformin dose-dependently enhanced the transcriptional activity of FXR and MAFG and inhibited the expression of CYP8B1. Metformin-treated DM rats showed improved glucose and bile acid metabolism. In addition, significantly increased FXR and MAFG and decreased CYP8B1 were observed in DM + MET rats. At the same time, the CA content of metformin-treated rats was lower than that of diabetic rats. CONCLUSION Changes in CA synthesis after metformin treatment may be associated with inhibition of CYP8B1. These results may play an important role in improving insulin sensitivity after metformin treatment.
Collapse
Affiliation(s)
- Mengsiyu Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaowen Hu
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yeqiu Xu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaolin Hu
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chunxue Zhang
- Department of Radiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuguang Pang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|