1
|
Dahma Z, Ibáñez-Escribano A, Fonseca-Berzal C, García-Rodríguez JJ, Álvarez-Álvarez C, Torrado-Salmerón C, Torrado-Santiago S, de la Torre-Iglesias PM. Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin. Polymers (Basel) 2024; 16:2174. [PMID: 39125200 PMCID: PMC11315005 DOI: 10.3390/polym16152174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Indomethacin (IND) as a non-selective cyclooxygenase 1 and 2 inhibitor administered orally causes numerous adverse effects, mostly related to the gastrointestinal tract. Moreover, when applied exogenously in topical preparations, there are obstacles to its permeation through the stratum corneum due to its low water solubility and susceptibility to photodegradation. In this work, solid dispersions (SDs) of IND with low-substituted hydroxypropyl cellulose (LHPC) were developed. The IND-SDs were incorporated into a hydroxypropyl guar (HPG) hydrogel to enhance drug solubility on the skin. The hydrogels were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), viscosity, drug release, and unspecific cytotoxicity in mammalian cells. SEM showed a highly porous structure for SD hydrogels. DSC and XRPD studies showed that amorphous IND species were formed; therefore, these hydrogels exhibited superior drug release in comparison with IND raw material hydrogels. FTIR evidenced the presence of the hydrogen bond in the SD hydrogel. The rheology parameter viscosity increased across gels formulated with SDs in comparison with hydrogels with pure IND. In addition, IND-SD hydrogels combine the advantages of a suitable viscosity for dermal use and no potentially hazardous skin irritation. This study suggests that the formulated IND-SD hydrogels represent a suitable candidate for topical administration.
Collapse
Affiliation(s)
- Zaid Dahma
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
| | - Alexandra Ibáñez-Escribano
- Departamento de Microbiología y Parasitología, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (A.I.-E.); (C.F.-B.); (J.J.G.-R.)
| | - Cristina Fonseca-Berzal
- Departamento de Microbiología y Parasitología, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (A.I.-E.); (C.F.-B.); (J.J.G.-R.)
| | - Juan José García-Rodríguez
- Departamento de Microbiología y Parasitología, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (A.I.-E.); (C.F.-B.); (J.J.G.-R.)
| | - Covadonga Álvarez-Álvarez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Marina de la Torre-Iglesias
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (Z.D.); (C.Á.-Á.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial (IUFI), Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
2
|
Gvoic V, Prica M, Turk Sekulic M, Pap S, Paunovic O, Kulic Mandic A, Becelic-Tomin M, Vukelic D, Kerkez D. Synergistic effect of Fenton oxidation and adsorption process in treatment of azo printing dye: DSD optimization and reaction mechanism interpretation. ENVIRONMENTAL TECHNOLOGY 2024; 45:1781-1800. [PMID: 36448931 DOI: 10.1080/09593330.2022.2154082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The main challenges to overcome within the Fenton process are the acidic pH as an optimal reaction condition, sludge formation in neutral pH medium and high toxicity of treated printing wastewater due to the generation of contaminating by-products. This research discusses the catalytic activity of homogeneous (FeSO4/H2O2) and heterogeneous (Fe2(MoO4)3/H2O2) Fenton processes in treatment of Yellow azo printing dye in synthetic aqueous solution and real printing effluent, with an integration of adsorption on functionalized biochar synthesized from wild plum kernels. The definitive screening design (DSD), was used to design the experiment. Independent variables were initial dye concentration (20-180 mg L-1), iron concentration (0.75-60 mg L-1), pH (2-10) and hydrogen peroxide concentration (1-11 mM). Higher decolourization efficiency of 79% was obtained within homogeneous Fenton treatment of printing wastewater, in comparison to heterogeneous Fenton treatment (54%), after a reaction time of 60 min. Same trend of mineralization degree was established: COD removal was 59% and 33% for homogeneous and heterogeneous Fenton process, respectively. The application of adsorption treatment has achieved significant advantages in terms of toxicity reduction (95%) and decolourization efficiency (90% of TOC removal and 22% of dye removal) of treated samples, even at neutral pH medium. Degradation mechanisms within Fenton and adsorption processes were proposed based on the qualitative gas chromatography/mass spectrometry analysis, physico-chemical properties of dye degradation products and functionalized biochar. Overall, the homogeneous Fenton/adsorption combined process can be potentially used as a treatment to remove azo dyes from contaminated water.
Collapse
Affiliation(s)
- Vesna Gvoic
- Faculty of Technical Sciences, Department of Graphic Engineering and Design, University of Novi Sad, Novi Sad, Serbia
| | - Miljana Prica
- Faculty of Technical Sciences, Department of Graphic Engineering and Design, University of Novi Sad, Novi Sad, Serbia
| | - Maja Turk Sekulic
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Novi Sad, Serbia
| | - Sabolc Pap
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Novi Sad, Serbia
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Thurso, Scotland, UK
| | - Olivera Paunovic
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Kulic Mandic
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Milena Becelic-Tomin
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Djordje Vukelic
- Faculty of Technical Sciences, Department of Production Engineering, University of Novi Sad, Novi Sad, Serbia
| | - Djurdja Kerkez
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Maiti S, Maji B, Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr Polym 2024; 326:121584. [PMID: 38142088 DOI: 10.1016/j.carbpol.2023.121584] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/25/2023]
Abstract
Natural polysaccharides are being studied for their biocompatibility, biodegradability, low toxicity, and low cost in the fabrication of various hydrogel devices. However, due to their insufficient physicochemical and mechanical qualities, polysaccharide hydrogels alone are not acceptable for biological applications. Various synthetic crosslinkers have been tested to overcome the drawbacks of standalone polysaccharide hydrogels; however, the presence of toxic residual crosslinkers, the generation of toxic by-products following biodegradation, and the requirement of toxic organic solvents for processing pose challenges in achieving the desired non-toxic biomaterials. Natural crosslinkers such as citric acid, tannic acid, vanillin, gallic acid, ferulic acid, proanthocyanidins, phytic acid, squaric acid, and epigallocatechin have been used to generate polysaccharide-based hydrogels in recent years. Various polysaccharides, including cellulose, alginate, pectin, hyaluronic acid, and chitosan, have been hydrogelized and investigated for their potential in drug delivery and tissue engineering applications using natural crosslinkers. We attempted to provide an overview of the synthesis of polysaccharide-based hydrogel systems (films, complex nanoparticles, microspheres, and porous scaffolds) based on green crosslinkers, as well as a description of the mechanism of crosslinking and properties with a special emphasis on drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India
| |
Collapse
|
4
|
Photocatalytic Degradation of Magenta Effluent Using Magnetite Doped TiO2 in Solar Parabolic Trough Concentrator. Catalysts 2022. [DOI: 10.3390/catal12090986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to population growth and industrial development consumption of non-renewable energy sources, and consequently pollution, has increased. In order to reduce energy utilisation and preserve the environment, developed and developing countries are increasingly trying to find solutions based on renewable energy sources. Cost-effective wastewater treatment methods using solar energy would significantly ensure effective water source utilisation, thereby contributing towards sustainable development goals. In this paper, special emphasis is given to the use of solar energy as the driving force of the process, as well as the use of highly active magnetic TiO2-based catalysts. Therefore, in this study, we investigated the possibility of photocatalytic degradation of aqueous magenta graphic dye using titanium dioxide as a catalyst and DSD model in order to achieve the best process optimisation. TiO2 was successfully coated with magnetic nanoparticles by one step process and characterized using different techniques (BET, SEM/EDS, FTIR, XRD). Based on DSD statistical method optimal reaction conditions were pH = 6.5; dye concentration 100 mg/L; TiO2–Fe3O4 0.6 g/L, at which the highest degree of magenta dye decolourisation was achieved (85%). Application of solar energy coupled with magnetic TiO2 catalyst which could be recovered and reused makes this approach a promising alternative in green wastewater treatment.
Collapse
|
5
|
Synchronizing the release rates of topotecan and paclitaxel from a self-eroding crosslinked chitosan - PLGA platform. Int J Pharm 2022; 623:121945. [PMID: 35738334 DOI: 10.1016/j.ijpharm.2022.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
This study is a continuation of a previous study in which two model drugs, sodium salicylate (highly water-soluble) and indomethacin (low water-soluble) were loaded into an erodible hydrogel, made of ionically crosslinked chitosan (x-Ct). The erosion rate of the x-Ct matrix was controlled by its immersion in calcium chloride solutions (de-crosslinker) of different concentrations, leading to synchronization of the release rates of the two drugs over 2 h. In the present study, a modified platform was developed in order to (a) synchronize the release rates of the two cytotoxic drugs, topotecan (TT, highly water soluble) and paclitaxel (PTX, poorly water soluble); (b) prolong the erosion duration and the derived concomitant release of the two drugs to several days. TT was loaded into a PLGA sphere, which was co-loaded with calcium chloride (CaCl2). The sphere was then placed in an aqueous solution of chitosan (Ct) in which PTX was dispersed. A PLGA core-containing hydrogel was then produced by ionically crosslinking the Ct. The formulation screening section of the study includes a statistically designed Fractional Factorial experiment. It was comprised of the following five experimental factors: (a) the type of Ct and (b) its relative amount in the formulation, (c) the type of ionic crosslinker (citric acid or oxalic acid), (d) the concentration of the ionic crosslinker and (e) the co-loaded amounts of CaCl2 (the constitutional de-crosslinking agent). The difference factor, f1, and the similarity factor, f2, of the TT and PTX release profiles into water, were used as the experimental responses. The computerized prediction models were employed to assess the collective effects of the pre-determined experimental factors on the difference factor, f1, and the similarity factor, f2 (the response factors), by employing a fractional factorial design and multifactorial analysis, without the need to account for the exact mechanisms of the release processes involved. The final composite platform was capable of releasing TT and PTX, at similar (concomitant) rates, over a period of 7 days, a finding which suggests that the novel polymeric platform may serve as a multi-drug implant. An attractive medical application for such a device would be post-operative local treatment that could benefit from localized combination chemotherapy after the removal of malignant tissues, in the surgical treatment of breast cancer, ovarian cancer, glioma and peritoneal carcinomatosis.
Collapse
|
6
|
Ameli H, Alizadeh N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Adv 2022; 12:4681-4691. [PMID: 35425510 PMCID: PMC8981441 DOI: 10.1039/d1ra07791k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Nano polymeric micelles (nano PMs) help to increase accessibility to tumor sites, decrease side effects and allow controlled drug dissemination over a long period of time. The aim of this study was to optimize the delivery of the anticancer drug capecitabine (CAP) using nano PMs and cyclodextrin (CD) to allow the treatment of colon cancer. A pH-responsive copolymer was prepared and the variables of loading time, loading temperature, the amount of copolymer and also the ratio of acrylic/maleic copolymer to beta CD and the effect that these variables have on drug loading were investigated, with variable optimization studies carried out following a definitive screening design (DSD). The morphology and structure of the particles were determined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy. In vitro drug release exemplified that the micelles were pH-sensitive, this action was shown that firstly the drug release was done perfectly targeted and under control and secondly the drug has been released above 80% inside the colon. Nano polymeric micelles (nano PMs) help to increase accessibility to tumor sites, decrease side effects and allow controlled drug dissemination over a long period of time.![]()
Collapse
Affiliation(s)
- Hossein Ameli
- Department of Chemistry, Faculty of Science, University of Guilan P.B. 41335-1914 Rasht Iran
| | - Nina Alizadeh
- Department of Chemistry, Faculty of Science, University of Guilan P.B. 41335-1914 Rasht Iran
| |
Collapse
|
7
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Usuda S, Masukawa N, Leong KH, Okada K, Onuki Y. Effects of Manufacturing Process Variables on the Tablet Weight Variation of Mini-tablets Clarified by a Definitive Screening Design. Chem Pharm Bull (Tokyo) 2021; 69:896-904. [PMID: 34470954 DOI: 10.1248/cpb.c21-00427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of manufacturing process variables of mini-tablets, in particular, the effect of process variables concerning fluidized bed granulation on tablet weight variation. Test granules were produced with different granulation conditions according to a definitive screening design (DSD). The five evaluated factors assigned to DSD were: the grinding speed of the sample mill at the grinding process of the active pharmaceutical ingredient (X1), microcrystalline cellulose content in granules (X2), inlet air temperature (X3), binder concentration (X4) and the spray speed of the binder solution (X5) at the granulation process. First, the relationships between the evaluated factors and the granule properties were investigated. As a result of the DSD analysis, the mode of action of granulation parameters on the granule properties was fully characterized. Subsequently, the variation in tablet weight was examined. In addition to mini-tablets (3 mm diameter), this experiment assessed regular tablets (8 mm diameter). From the results for regular tablets, the variation in tablet weight was affected by the flowability of granules. By contrast, regarding the mini-tablets, no significant effect on the variation of tablet weight was found from the evaluated factors. From this result, this study further focused on other important factors besides the granulation process, and then the effect of the die-hole position of the multiple-tip tooling on tablet weight variation was proven to be significant. Our findings provide a better understanding of manufacturing mini-tablets.
Collapse
Affiliation(s)
- Shui Usuda
- Laboratory of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | | | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya
| | - Kotaro Okada
- Laboratory of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| |
Collapse
|
9
|
Zuo W, Jincheng W, Shiqiang S, Pinhua R, Runkai W, Shihui L. Microencapsulated soil conditioner with a water-soluble core: improving soil nutrition of crop root. J Microencapsul 2020; 38:22-35. [PMID: 33047995 DOI: 10.1080/02652048.2020.1836056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Traditional level of fertilisers was used by most farmers in China with the risks about resources wasting, environmental pollution together with soil structure deterioration. It is practicable to tackle the challenges about over-fertilisation and low efficiency with microencapsulated soil conditioner (MSC), which clads the water soluble core with natural polymer. Fulvic acid (FA) can be used as core material, because it possesses the characteristics of water-soluble, fertiliser maintenance and expedient monitoring. The morphology, structure, and properties of MSC were studied and compared. The particle size of MSC was ranged from 1.58 to 2.14 mm with a similar shape which was obtained by conventional measuring method due to their soft features. This was mainly attributed to the concentration of liquid paraffin and the interaction between shell materials and calcium chloride. FTIR spectra showed that a peak appeared at 1372 cm-1, and this was ascribed to the microcapsules crosslinked and solidified by calcium ions. Sustained release experiment revealed that the microcapsules owned better fertiliser-retaining and water-retaining performances, and FA may be released as long as 750 h. Biodegradation experiments revealed that an obvious pore structure was found on the surface of microspheres after 30 d of degradation, and this was consistent with the sustained release experiment. Pot experiment illustrated that the plants cured with the microcapsules showed significant growth trend and grew up to 9.2 cm with a maximum rate, and this revealed that MSC owned better performance of promoting the growth of crop root.
Collapse
Affiliation(s)
- Wang Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Wang Jincheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Song Shiqiang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Rao Pinhua
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Wang Runkai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China
| | - Liu Shihui
- Key Laboratory of Quality and Safety Regulating of Horticultural Crop Products, Ministry of Agriculture, Shanghai, P. R. China.,Shanghai Sunqiao Agricultural Science and Technology Co., Ltd, Shanghai, P. R. China.,School of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, P. R. China
| |
Collapse
|
10
|
Li J, Jin X, Zhang L, Yang Y, Liu R, Li Z. Comparison of Different Chitosan Lipid Nanoparticles for Improved Ophthalmic Tetrandrine Delivery: Formulation, Characterization, Pharmacokinetic and Molecular Dynamics Simulation. J Pharm Sci 2020; 109:3625-3635. [PMID: 32946897 DOI: 10.1016/j.xphs.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
In this study, three different chitosan, namely carboxymethyl chitosan (CMC), hydroxypropyl chitosan (HPC) and trimethyl chitosan (TMC) were used as cationic materials to prepare tetrandrine lipid nanoparticles (TET-LNPs) for the treatment of glaucoma. In vitro drug release and pre-corneal retention were used to select the optimal chitosan. In vitro drug release curves of three kinds of LNPs showed a sustained release and TMC-TET-LNPs were the slowest. Moreover, compared with CMC-TET-LNPs and HPC-TET-LNPs, TMC-TET-LNPs had longer corneal retention time. Afterwards, the characteristics of TMC-TET-LNPs were investigated. The ocular irritation study revealed no sign of irritation in rabbit eyes. The pharmacokinetic studies showed that the area under the curve of TMC-TET-LNPs was increased by 2.03 times than TET solution (p < 0.01). Furthermore, the drug biofilm interactions were evaluated by molecular dynamics (MD) simulation. In MD simulation, the strong hydrophobic group of TET interacted with the tail of POPC, making it hard to enter the hydrophobic region of the membrane, thereby restricting TET ocular bioavailability. The experiments and MD simulation indicated that TMC-TET-LNPs had great potential for ocular administration and MD simulation could predict transmembrane transport of drugs.
Collapse
Affiliation(s)
- Jinjing Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, China
| | - Lingling Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yang Yang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| |
Collapse
|
11
|
Takagaki K, Ito T, Arai H, Obata Y, Takayama K, Onuki Y. The Usefulness of Definitive Screening Design for a Quality by Design Approach as Demonstrated by a Pharmaceutical Study of Orally Disintegrating Tablet. Chem Pharm Bull (Tokyo) 2019; 67:1144-1151. [PMID: 31582634 DOI: 10.1248/cpb.c19-00553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Definitive screening design (DSD) is a new class of small three-level experimental design that is attracting much attention as a technical tool of a quality by design (QbD) approach. The purpose of this study is to examine the usefulness of DSD for QbD through a pharmaceutical study on the preparation of ethenzamide-containing orally disintegrating tablet. Model tablets were prepared by directly compressing the mixture of the active pharmaceutical ingredient (API) and excipients. The five evaluated factors assigned to DSD were: the contents of API (X1) and lubricant (X2), and the compression force (X3) of the tableting process, the mixing time (X4), and the filling ratio of powder in the V-type mixer (X5). After tablet preparation, hardness and disintegration time were measured. The same experiments were performed by using the conventional design of experiments [i.e., L8 and L16 orthogonal array designs and central composite design (CCD)]. Results showed that DSD successfully clarified how various factors contribute to tablet properties. Moreover, the analysis result from DSD agreed well with those from the L8 and L16 experiments. In additional experiments, response surfaces for tablet properties were created by DSD. Compared with the response surfaces created by CCD, DSD could produce reliable response surfaces for its smaller number of experiments. We conclude that DSD is a powerful tool for implementing pharmaceutical studies including the QbD approach.
Collapse
Affiliation(s)
| | - Terushi Ito
- Laboratory of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| | | | | | - Kozo Takayama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, Graduate School of Medical and Pharmaceutical Science, University of Toyama
| |
Collapse
|
12
|
Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2018; 11:E1. [PMID: 30959985 PMCID: PMC6401776 DOI: 10.3390/polym11010001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Rahul Patil
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|