1
|
Da Silva AF, França SB, Costa LFDL, Dos Santos RA, Pinheiro NDA, Barros MEDSB, Lima DJDP. Cinnamamides: a review of research in the agrochemical field. PEST MANAGEMENT SCIENCE 2025; 81:1145-1156. [PMID: 39579043 DOI: 10.1002/ps.8559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
The need for implementation of economically viable agrochemicals with lower toxicity and that are capable of overcoming resistance developed by insects, fungi and invasive plants has spurred the scientific community in the search for new active and selective substances and synthetic methodologies that adhere to the parameters of green chemistry. Cinnamamides, in turn, present a scaffold that has been a basis for various investigations due to their broad spectrum of biological activities. The agrochemical industry is a vast field in which these classes of compounds stand out, whether for their potential herbicidal, fungicidal, nematicidal, or insecticidal properties. Therefore, this review reports the progress of synthesis and the agrochemical potential of cinnamamides, their mechanism of action, and their structure-activity relationship (SAR), to provide insights for further research addressing the use of cinnamamides in crop protection. © 2024 Society of Chemical Industry.
Collapse
|
2
|
Villamizar–Mogotocoro A, Kouznetsov VV. Simple and efficient microwave-assisted synthesis of new N-biphenyl cinnamamides/3-arylpropanamides and C6-substituted phenanthridines. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Ortiz Villamizar MC, Puerto Galvis CE, Pedraza Rodríguez SA, Zubkov FI, Kouznetsov VV. Synthesis, In Silico and In Vivo Toxicity Assessment of Functionalized Pyridophenanthridinones via Sequential MW-Assisted Intramolecular Friedel-Crafts Alkylation and Direct C-H Arylation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238112. [PMID: 36500206 PMCID: PMC9741109 DOI: 10.3390/molecules27238112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
A rapid, efficient, and original synthesis of novel pyrido[3,2,1-de]phenanthridin-6-ones is reported. First, the key cinnamamide intermediates 8a-f were easily prepared from commercial substituted anilines, cinnamic acid, and 2-bromobenzylbromide in a tandem amidation and N-alkylation protocol. Then, these N-aryl-N-(2-bromobenzyl) cinnamamides 8a-f were subjected to a TFA-mediated intramolecular Friedel-Crafts alkylation followed by a Pd-catalyzed direct C-H arylation to obtain a series of potentially bioactive 4-phenyl-4,5-dihydro-6H,8H-pyrido[3,2,1-de]phenanthridin-6-one derivatives 4a-f in good yields. Finally, the toxicological profile of the prepared final compounds, including their corresponding intermediates, was explored through in silico computational methods, while the acute toxicity toward zebrafish embryos (96 hpf-LC50, 50% lethal concentration) was also determined in the present study.
Collapse
Affiliation(s)
- Marlyn C. Ortiz Villamizar
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Silvia A. Pedraza Rodríguez
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| | - Fedor I. Zubkov
- Department of Organic Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Correspondence: (F.I.Z.); (V.V.K.); Tel.: +57-7-634-4000 (ext. 1243) (V.V.K.)
| | - Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
- Correspondence: (F.I.Z.); (V.V.K.); Tel.: +57-7-634-4000 (ext. 1243) (V.V.K.)
| |
Collapse
|
4
|
Borah P, Hazarika S, Deka S, Venugopala KN, Nair AB, Attimarad M, Sreeharsha N, Mailavaram RP. Application of Advanced Technologies in Natural Product Research: A Review with Special Emphasis on ADMET Profiling. Curr Drug Metab 2020; 21:751-767. [PMID: 32664837 DOI: 10.2174/1389200221666200714144911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
The successful conversion of natural products (NPs) into lead compounds and novel pharmacophores has emboldened the researchers to harness the drug discovery process with a lot more enthusiasm. However, forfeit of bioactive NPs resulting from an overabundance of metabolites and their wide dynamic range have created the bottleneck in NP researches. Similarly, the existence of multidimensional challenges, including the evaluation of pharmacokinetics, pharmacodynamics, and safety parameters, has been a concerning issue. Advancement of technology has brought the evolution of traditional natural product researches into the computer-based assessment exhibiting pretentious remarks about their efficiency in drug discovery. The early attention to the quality of the NPs may reduce the attrition rate of drug candidates by parallel assessment of ADMET profiling. This article reviews the status, challenges, opportunities, and integration of advanced technologies in natural product research. Indeed, emphasis will be laid on the current and futuristic direction towards the application of newer technologies in early-stage ADMET profiling of bioactive moieties from the natural sources. It can be expected that combinatorial approaches in ADMET profiling will fortify the natural product-based drug discovery in the near future.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Sangeeta Hazarika
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh-221005, India
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa-31982, Saudi Arabia
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur (Affiliated to Andhra University), Bhimavaram, W.G. Dist., Andhra Pradesh, India
| |
Collapse
|
5
|
Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. PLANTS 2020; 9:plants9101345. [PMID: 33053800 PMCID: PMC7601530 DOI: 10.3390/plants9101345] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research.
Collapse
|
6
|
Puerto Galvis CE, Kouznetsov VV. Biomimetic Total Synthesis of Dysoxylum Alkaloids. J Org Chem 2019; 84:15294-15308. [PMID: 31689360 DOI: 10.1021/acs.joc.9b02093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A five-step total synthesis of Dysoxylum alkaloids has been achieved using a biomimetic approach from zanthoxylamide protoalkaloids. The synthesis featured a direct amidation and a Bischler-Napieralski reaction to form the dihydroisoquinoline ring, which was then subjected to a Noyori asymmetric transfer hydrogenation to establish the stereogenic center at C-1. Our synthetic sequence provides an important perspective on the biosynthetic origin of Dysoxylum alkaloids, since 6 natural alkaloids and 12 synthetic analogues were obtained with high enantioselectivity and in overall yields up to 68%. In addition, we describe the acute toxicity toward zebrafish embryos of Dysoxylum alkaloids, comparing their toxicity with that of their corresponding zanthoxylamide protoalkaloids and establishing an enantioselectivity-toxicity relationship.
Collapse
Affiliation(s)
- Carlos E Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular, CMN , Universidad Industrial de Santander , Parque Tecnológico Guatiguará, Km 2 Vía Refugio , Piedecuesta 681011 , Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN , Universidad Industrial de Santander , Parque Tecnológico Guatiguará, Km 2 Vía Refugio , Piedecuesta 681011 , Colombia
| |
Collapse
|