1
|
Wang Y, Zeng L, Song W, Liu J. Influencing factors and drug application of iontophoresis in transdermal drug delivery: an overview of recent progress. Drug Deliv Transl Res 2022; 12:15-26. [PMID: 33486687 DOI: 10.1007/s13346-021-00898-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Transdermal drug delivery is limited by the stratum corneum of skin, which blocks most molecules, and thus, only few molecules with specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) are able to penetrate the skin. Recently, various technologies have been developed to overcome the strong barrier properties of stratum corneum. Iontophoresis technology, which uses a small current to improve drug permeation through skin, is one of the effective ways to circumvent the stratum corneum. This approach not only provides a more efficient, noninvasive, and patient-friendly method of drug delivery but also widens the scope of drugs for transdermal delivery. In this review, the mechanisms underlying iontophoresis and affecting factors are outlined. The focus will be on the latest advancements in iontophoretic transdermal drug delivery and application of iontophoresis with other enhancing technologies. The challenges of this technology for drug administration have also been highlighted, and some iontophoretic systems approved for clinical use are described.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, China
| | - Lijuan Zeng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, China
| | - Wenting Song
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, China
| | - Jianping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Jiangsu Province, Nanjing, 211198, China.
| |
Collapse
|
2
|
Ruangmak K, Paradee N, Niamlang S, Sakunpongpitiporn P, Sirivat A. Electrically controlled transdermal delivery of naproxen and indomethacin from porous cis-1,4-polyisoprene matrix. J Biomed Mater Res B Appl Biomater 2021; 110:478-488. [PMID: 34399032 DOI: 10.1002/jbm.b.34926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 11/10/2022]
Abstract
This study is focused on the inquiry of using a porous polymeric structure to absorb and release transdermally two drugs through a skin from deproteinized natural rubber latex (DPNR). The porous DPNR films were fabricated from the internal formation of surfactant micelles and their subsequent leaching out to generate porous structures. The pore size of DPNR films increased with increasing surfactant amount. The model drugs were naproxen and indomethacin; their releases and release-permeations were investigated under the effects of surfactant amount, electrical potential, and drug size. Without electric field, the drug release mechanism was mainly driven by concentration gradient. The higher amount of drug released was obtained from the matrix with a larger pore size. Under electric field, the higher amounts of drug release were obtained in the shorter drug release durations, via the electrorepulsive force between the negatively charged drugs and the cathode electrode. The molecular drug size was a factor for the drug absorption, release rate and amount. For the drug release-permeation experiment through the pig skin, there were two release-permeation periods as governed by the combination of concentration gradient and swelling in the first period, and the matrix erosion in the second period. The fabricated porous DPNR films have been shown here to be potential to be used as a transdermal patch with electrically controllable drug release rate, amount and duration along with the facile drug-matrix loading and absorption.
Collapse
Affiliation(s)
- Kamonpan Ruangmak
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| | - Nophawan Paradee
- Sustainable Polymer & Innovative Composite Materials Research Group, Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sumonman Niamlang
- Advanced Materials Research Group, Faculty of Engineering, Department of Materials and Metallurgical Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani, Thailand
| | | | - Anuvat Sirivat
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Jiang C, Jiang X, Wang X, Shen J, Zhang M, Jiang L, Ma R, Gan T, Gong Y, Ye J, Gao W. Transdermal iontophoresis delivery system for terazosin hydrochloride: an in vitro and in vivo study. Drug Deliv 2021; 28:454-462. [PMID: 33620010 PMCID: PMC7906618 DOI: 10.1080/10717544.2021.1889719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study aimed to construct a transdermal iontophoresis delivery system for terazosin hydrochloride (IDDS-TEH), which included a positive and negative electrode hydrogel prescription. Intact guinea pig skin was used as a model for the skin barrier function, and the current intensity, terazosin hydrochloride (TEH) concentration, pH, competitive salt, and transdermal enhancer properties were studied. The blood drug concentration was determined in Sprague–Dawley (SD) rats using HPLC, and the antihypertensive effects of IDDS-TEH were evaluated in spontaneously hypertensive rats (SHRs). The results showed that the steady-state penetration rate of TEH increased (from 80.36 µg·cm−2·h−1 to 304.93 µg·cm−2·h−1), followed by an increase in the current intensity (from 0.10 mA·cm−2 to 0.49 mA·cm−2). The pH values also had a significant influence on percutaneous penetration. The blood concentration of IDDS-TEH was significantly higher (p < .05) than with passive diffusion, which could not be detected. The main pharmacokinetic parameters of the high current group (0.17 mA·cm−2) and the low current group (0.09 mA·cm−2) were AUC0–t: 5873.0 ng·mL−1·h and 2493.7 ng·mL−1·h, respectively. Meanwhile, the pharmacodynamic results showed that IDDS-TEH significantly decreased the blood pressure of SHRs compared with the TEH hydrogel without loading current. Therefore, TEH could be successfully delivered by the transdermal iontophoresis system in vitro and in vivo, and further clinical studies should be explored to develop a therapeutically useful protocol.
Collapse
Affiliation(s)
- Changzhao Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Xiumei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Xiumin Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Jiaxu Shen
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Mengjie Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Leilei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Rui Ma
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Tingting Gan
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yingbiao Gong
- Collaborative Innovation Center of Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jincui Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Wenyan Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Helmy AM. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
One-Pot Synthesis of Triazolobenzodiazepines Through Decarboxylative [3 + 2] Cycloaddition of Nonstabilized Azomethine Ylides and Cu-Free Click Reactions. Molecules 2019; 24:molecules24030601. [PMID: 30743991 PMCID: PMC6384988 DOI: 10.3390/molecules24030601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 11/22/2022] Open
Abstract
A one-pot synthesis of triazolobenzodiazepine-containing polycyclic compounds is introduced. The reaction process involves a decarboxylative three-component [3 + 2] cycloaddition of nonstabilized azomethine ylides, N-propargylation, and intramolecular click reactions.
Collapse
|