1
|
Hadji H, Cailleau C, Chassaing B, Bourge M, Ponchel G, Bouchemal K. Hyaluronan nanoplatelets exhibit extended residence time compared to spherical and ellipsoidal nanomaterials with equivalent surface potentials and volumes after oral delivery in rats. Biomater Sci 2024; 12:5812-5823. [PMID: 39405189 DOI: 10.1039/d4bm00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The physicochemical properties of colloidal particles-such as size, surface properties, and morphology-play a crucial role in determining their behaviors and transit through the gastrointestinal (GI) tract. While some data exist for nonspherical nanomaterials (NMs) composed of silica or polystyrene, there is limited understanding of NMs composed of polysaccharides and polymers. This study explores the fate and GI tract residence time of hyaluronan-based NMs with distinctive hexagonal morphology and flat surfaces (nanoplatelets) following administration to rats. The behavior of these nanoplatelets was compared to NMs with spherical and ellipsoidal morphologies. The three types of NMs were labeled with a near-infrared dye (Cy5.5) and administered in single doses to healthy rats, followed by real-time in vivo imaging over 24 hours. The results revealed that altering NM morphology from spherical to ellipsoidal did not significantly affect GI tract residence time or toxicity profiles in vitro and in vivo. However, nanoplatelets exhibited a stronger Cy5.5 fluorescence signal in the abdominal region and demonstrated slower gastric emptying than spherical and ellipsoidal NMs. Ex vivo analysis of excised GI tracts rinsed with saline indicated that nanoplatelets adhered more effectively to the tightly bound mucus layer. Furthermore, histological examination of colon sections showed that nanoplatelets induced a minimal global inflammation score comparable to that of healthy rats. This study underscores the potential of hyaluronan-based nanoplatelets for oral administration, offering promising directions for both fundamental research and practical applications in nanomedicine.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, CNRS UMR8612, 91400 Orsay, France
| | | | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France
- Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Mickaël Bourge
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Gilles Ponchel
- Université Paris-Saclay, CNRS UMR8612, 91400 Orsay, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
2
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
3
|
Sumohan Pillai A, Achraf Ben Njima M, Ayadi Y, Cattiaux L, Ladram A, Piesse C, Baptiste B, Gallard JF, Mallet JM, Bouchemal K. Cyclodextrin-based supramolecular nanogels decorated with mannose for short peptide encapsulation. Int J Pharm 2024; 660:124379. [PMID: 38925235 DOI: 10.1016/j.ijpharm.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Nanogels are aqueous dispersions of hydrogel particles formed by physically or chemically cross-linked polymer networks of nanoscale size. Herein, we devised a straightforward technique to fabricate a novel class of physically cross-linked nanogels via a self-assembly process in water involving α-cyclodextrin and a mannose molecule that was hydrophobically modified using an alkyl chain. The alkyl chain-modified mannose was synthesized in five steps, starting with D-mannose. Subsequently, nanogels were formed by subjecting α-cyclodextrin and the hydrophobically modified mannose to magnetic stirring in water. By adjusting the mole ratio between the hydrophobically modified mannose and α-cyclodextrin, nanogels with an average 100-150 nm diameter were obtained. Physicochemical and structural analyses by 1H NMR and X-ray diffraction unveiled a supramolecular and hierarchical mechanism underlying the creation of these nanogels. The proposed mechanism of nanogel formation involves two distinct steps: initial interaction of hydrophobically modified mannose with α-cyclodextrin resulting in the formation of inclusion complexes, followed by supramolecular interactions among these complexes, ultimately leading to nanogel formation after 72 h of stirring. We demonstrated the nanogels' ability to encapsulate a short peptide ([p-tBuF2, R5]SHf) as a water-soluble drug model. This discovery holds promise for potentially utilizing these nanogels in drug delivery applications.
Collapse
Affiliation(s)
- Archana Sumohan Pillai
- Département de Chimie, École Normale Supérieure-PSL University Paris, France; Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | | | - Yasmine Ayadi
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Laurent Cattiaux
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Ali Ladram
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252 Paris, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Plateforme d'Ingénierie des Protéines-Service de Synthèse Peptidique, F-75252 Paris, France
| | - Benoit Baptiste
- Sorbonne Université, CNRS, UMR 7590, IMPMC, IRD, MNHN, F-75252 Paris, France
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Centre de Recherche de Gif-sur-Yvette, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Jean-Maurice Mallet
- Département de Chimie, École Normale Supérieure-PSL University Paris, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
4
|
Diaz-Salmeron R, Cailleau C, Denis S, Ponchel G, Bouchemal K. Hyaluronan nanoplatelets exert an intrinsic anti-inflammatory activity in a rat model of bladder painful syndrome/interstitial cystitis. J Control Release 2023; 356:434-447. [PMID: 36921722 DOI: 10.1016/j.jconrel.2023.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Glycosaminoglycan (GAG) replenishment therapy consists of the instillation of GAG solutions directly in the bladder to alleviate Bladder Painful Syndrome/Interstitial Cystitis (BPS/IC). However, several issues were reported with this strategy because the GAG solutions are rapidly eliminated from the bladder by spontaneous voiding, and GAG have low bioadhesive behaviors. Herein, GAG nanomaterials with typical flattened morphology were obtained by a self-assembly process. The formation mechanism of those nanomaterials, denoted as nanoplatelets, involves the interaction of α-cyclodextrin cavity and alkyl chains covalently grafted on the GAG. Three GAG were used in this investigation, hyaluronan (HA), chondroitin sulfate (CS), and heparin (HEP). HA NP showed the best anti-inflammatory activity in an LPS-induced in vitro inflammation model of macrophages. They also exhibited the best therapeutic efficacy in a BPS/IC rat inflammation model. Histological examinations of the bladders revealed that HA NP significantly reduced bladder inflammation and regenerated the bladder mucosa. This investigation could open new perspectives to alleviate BPS/IC through GAG replenishment therapy.
Collapse
Affiliation(s)
| | | | - Stéphanie Denis
- Université Paris-Saclay, CNRS UMR 8612, IGPS, 91400 Orsay, France
| | - Gilles Ponchel
- Université Paris-Saclay, CNRS UMR 8612, IGPS, 91400 Orsay, France
| | - Kawthar Bouchemal
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
| |
Collapse
|
5
|
Dubashynskaya NV, Bokatyi AN, Gasilova ER, Dobrodumov AV, Dubrovskii YA, Knyazeva ES, Nashchekina YA, Demyanova EV, Skorik YA. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications. Int J Biol Macromol 2022; 215:243-252. [PMID: 35724903 DOI: 10.1016/j.ijbiomac.2022.06.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 μg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskii 26, St. Petersburg, Petrodvorets, 198504, Russian Federation
| | - Ekaterina R Gasilova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Elena S Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
6
|
Diaz-Salmeron R, Toussaint B, Cailleau C, Ponchel G, Bouchemal K. Morphology‐Dependent Bioadhesion and Bioelimination of Hyaluronan Particles Administered in the Bladder. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Raul Diaz-Salmeron
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Balthazar Toussaint
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Catherine Cailleau
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Gilles Ponchel
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612 Université Paris-Saclay 92296 Châtenay-Malabry France
| |
Collapse
|
7
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|
8
|
Real-time visualization of morphology-dependent self-motion of hyaluronic acid nanomaterials in water. Int J Pharm 2021; 609:121172. [PMID: 34627996 DOI: 10.1016/j.ijpharm.2021.121172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Drug delivery to target sites is often limited by inefficient particle transport through biological media. Herein, motion behaviors of spherical and nonspherical nanomaterials composed of hyaluronic acid were studied in water using real-time multiple particle tracking technology. The two types of nanomaterials have comparable surface compositions and surface potentials, and they have equivalent diameters. The analysis of nanomaterial trajectories revealed that particles with flattened morphology and a high aspect ratio, designated nanoplatelets, exhibited more linear trajectories and faster diffusion in water than nanospheres. Fitting the plots of mean square displacement vs. time scale suggests that nanoplatelets exhibited hyperdiffusive behavior, which is similar to the motion of living microorganisms. Furthermore, at 37 °C, the surface explored by a nanoplatelet was up to 33-fold higher than that explored by a nanosphere. This investigation on morphology-dependent self-motion of nanomaterials could have a significant impact on drug delivery applications by increasing particle transport through biological media.
Collapse
|
9
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Demyanova EV, Shcherbakova ES, Poshina DN, Shasherina AY, Anufrikov YA, Skorik YA. Hyaluronan/Diethylaminoethyl Chitosan Polyelectrolyte Complexes as Carriers for Improved Colistin Delivery. Int J Mol Sci 2021; 22:8381. [PMID: 34445088 PMCID: PMC8395075 DOI: 10.3390/ijms22168381] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 μg/mL.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Sergei V. Raik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Yaroslav A. Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia;
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
- Research and Training Center of Molecular and Cellular Technologies, St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, 197376 St. Petersburg, Russia
| | - Elena V. Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Elena S. Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Daria N. Poshina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Anna Y. Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yuri A. Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| |
Collapse
|
10
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Shcherbakova ES, Demyanova EV, Shasherina AY, Anufrikov YA, Poshina DN, Dobrodumov AV, Skorik YA. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int J Biol Macromol 2021; 187:157-165. [PMID: 34298050 DOI: 10.1016/j.ijbiomac.2021.07.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 μg/mL (against Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation; Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation; St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, St. Petersburg 197376, Russian Federation
| | - Elena S Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
11
|
Role of the interactions of soft hyaluronan nanomaterials with CD44 and supported bilayer membranes in the cellular uptake. Colloids Surf B Biointerfaces 2021; 205:111916. [PMID: 34146785 DOI: 10.1016/j.colsurfb.2021.111916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Increasing valence by acting on nanomaterial morphology can enhance the ability of a ligand to specifically bind to targeted cells. Herein, we investigated cell internalization of soft hyaluronic acid (HA) nanoplatelets (NPs) that exhibit a typical hexagonal shape, flat surfaces and high aspect ratio (Γ≈12 to 20), as characterized by atomic force microscopy in hydrated conditions. Fluorescence imaging revealed that internalization of HA-NPs by a T24 tumor cell line and by macrophages was higher than native polysaccharide in a dose-dependent and time-dependent manners. The ability of HA-NPs to efficiently compete with native HA assessed using Bio-layer interferometry showed that NPs had a stronger interaction with recombinant CD44 receptor compared to native HA. The results were discussed regarding physical properties of the NPs and the implication of multivalent interactions in HA binding to CD44. Experiments conducted on supported bilayer membranes with different compositions showed that non-specific interactions of NPs with lipid membranes were negligible. Our findings provide insights into intracellular drug delivery using soft HA-NPs through receptor-mediated multivalent interactions.
Collapse
|