1
|
Arévalo-Pérez R, Maderuelo C, Lanao JM. In Silico Evaluation of the Biopharmaceutical and Pharmacokinetic Behavior of Metronidazole from Coated Colonic Release Matrix Tablets. Pharmaceutics 2025; 17:647. [PMID: 40430937 PMCID: PMC12114857 DOI: 10.3390/pharmaceutics17050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Physiologically based biopharmaceutics modeling (PBBM) models can help to predict drug release and in vivo absorption behaviors. Colon drug delivery systems have gained interest over the past few years due to the advantages they provide in treating certain diseases in a local way. The objectives of this work were to simulate the biopharmaceutical and pharmacokinetic behavior of metronidazole hydrophilic matrices coated with different enteric polymers and to highlight the factors with a significant impact on the simulated pharmacokinetic parameters. Methods: Physicochemical properties of metronidazole were introduced into Simcyp® simulator platform, and the Advanced Dissolution Absorption Model (ADAM) was employed to simulate the in vivo intestinal absorption and colonic concentrations of metronidazole using a PBBM model. A Kruskal-Wallis test was carried out in order to determine which one of the factors studied has a statistically significant impact on the pharmacokinetic parameters (AUC, Cmax, and Tmax) simulated. Results: Enteric-coated matrix tablets are capable of avoiding metronidazole absorption in the small intestine and releasing it in the colonic region. The release and absorption rates of metronidazole depend largely on the percentage of weight gain of the coating and also on the coating agent. Coated tablets with a time-dependent coating show less variability. Conclusions: PBBM models can help predict the release from drug delivery systems and the pharmacokinetics in vivo of metronidazole from data obtained in vitro, although complementary in vivo studies should be needed.
Collapse
Affiliation(s)
- Roberto Arévalo-Pérez
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Cristina Maderuelo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Lanao
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Jain KMH, Duggal I, Hou HH, Siegel RA. Artificial gut Simulator. A scheme to predict intestinal and plasma concentration-time profiles of a weakly basic BCS-II drug, dipyridamole. Eur J Pharm Biopharm 2025; 210:114688. [PMID: 40089075 DOI: 10.1016/j.ejpb.2025.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The objective of this study was to develop a scheme to predict intestinal and plasma concentration-time profiles of the weakly basic BCS-II drug, dipyridamole (DPD), using an Artificial Gut Simulator (AGS) integrated with a compartment-based disposition model. In vivo data for this study was obtained from previously published literature. A 3-compartment disposition model was developed using the plasma concentration-time profile of DPD following an intravenous bolus dose. The AGS, consisting of a donor cell and a hollow fiber-based absorption module, was tuned to absorb DPD saturated solution at a physiological rate constant, 0.0402 min-1, based on the measured Caco-2 cell monolayer permeability coefficient. The dose dumping technique commonly used during dissolution testing can generate excessively high initial supersaturation and precipitation which is not physiologically relevant. In this study, fractions of DPD dose were added incrementally every 15 min to the AGS donor to simulate an overall first-order gastric emptying process. The concentration absorbed by the hollow fiber receiver media was input into the central compartment of the disposition model. The predicted plasma concentration-time profile matched the human in vivo profile of DPD obtained after oral administration of a 50 mg dose. For 30 and 90 mg oral doses, time profiles of concentration and fraction precipitated in the AGS donor agreed well with human duodenal measurements. This study demonstrates the significance of simulating physiological rate of absorption in vitro to accurately predict the bioavailability of a BCS-II compound.
Collapse
Affiliation(s)
| | - Ishaan Duggal
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Zupan N, Yous I, Danede F, Verin J, Kouach M, Foulon C, Dudognon E, Florin Muschert S. Impact of Hot-Melt Extrusion on Glibenclamide's Physical and Chemical States and Dissolution Behavior: Case Studies with Three Polymer Blend Matrices. Pharmaceutics 2024; 16:1071. [PMID: 39204416 PMCID: PMC11360095 DOI: 10.3390/pharmaceutics16081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR and Affinisol HPMC HME 4M. Glibenclamide solid dispersions are characterized using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry), X-ray diffraction and scanning electron microscopy. This study reveals the transformation of glibenclamide into impurity A during the HME process using mass spectrometry and TGA. Thus, it enables the quantification of the extent of degradation. Furthermore, this work shows how polymer-polymer blend matrices exert an impact on process parameters, the active pharmaceutical ingredient's physical state, and drug release behavior. In vitro dissolution studies show that the polymeric matrices investigated provide extended drug release (over 24 h), mainly dictated by the polymer's chemical nature. This paper highlights how glibenclamide is degraded during HME and how polymer selection crucially affects the sustained release dynamics.
Collapse
Affiliation(s)
- Nina Zupan
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | - Ines Yous
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
| | - Florence Danede
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | - Jeremy Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (N.Z.)
| | - Mostafa Kouach
- Univ. Lille, CHU Lille, ULR 7365-GRITA, F-59000 Lille, France
| | | | - Emeline Dudognon
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET, F-59000 Lille, France (E.D.)
| | | |
Collapse
|
4
|
Kesharwani SS, Louit G, Ibrahim F. The Use of Global Sensitivity Analysis to Assess the Oral Absorption of Weakly Basic Compounds: A Case Example of Dipyridamole. Pharm Res 2024; 41:877-890. [PMID: 38538971 DOI: 10.1007/s11095-024-03688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE To utilize the global system analysis (GSA) in oral absorption modeling to gain a deeper understanding of system behavior, improve model accuracy, and make informed decisions during drug development. METHODS GSA was utilized to give insight into which drug substance (DS), drug product (DP), and/or physiological parameter would have an impact on peak plasma concentration (Cmax) and area under the curve (AUC) of dipyridamole as a model weakly basic compound. GSA guided the design of in vitro experiments and oral absorption risk assessment using FormulatedProducts v2202.1.0. The solubility and precipitation profiles of dipyridamole in different bile salt concentrations were measured. The results were then used to build a mechanistic oral absorption model. RESULTS GSA warranted further investigation into the precipitation kinetics and its link to the levels of bile salt concentrations. Mechanistic modeling studies demonstrated that a precipitation-integrated modeling approach appropriately predicted the mean plasma profiles, Cmax, and AUC from the clinical studies. CONCLUSIONS This work shows the value of GSA utilization in early development to guide in vitro experimentation and build more confidence in identifying the critical parameters for the mathematical models.
Collapse
Affiliation(s)
- Siddharth S Kesharwani
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water St, Cambridge, MA, 02141, USA
| | - Guillaume Louit
- Siemens K.K, DI SW Division, 1-6-1 Miyahara, Osaka, 532-0003, Japan
| | - Fady Ibrahim
- US Early Development Biopharmacy, Synthetics Platform, Sanofi, 350 Water St, Cambridge, MA, 02141, USA.
| |
Collapse
|
5
|
Niessen J, López Mármol Á, Ismail R, Schiele JT, Rau K, Wahl A, Sauer K, Heinzerling O, Breitkreutz J, Koziolek M. Application of biorelevant in vitro assays for the assessment and optimization of ASD-based formulations for pediatric patients. Eur J Pharm Biopharm 2023; 185:13-27. [PMID: 36813089 DOI: 10.1016/j.ejpb.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Amorphous solid dispersions (ASD) have been a successful formulation strategy to overcome the poor aqueous solubility of many novel drugs, but the development of pediatric formulations presents a special challenge due to variable gastrointestinal conditions in children. It was the aim of this work to design and apply a staged biopharmaceutical test protocol for the in vitro assessment of ASD-based pediatric formulations. Ritonavir was used as a model drug with poor aqueous solubility. Based on the commercial ASD powder formulation, a mini-tablet and a conventional tablet formulation were prepared. Drug release from the three formulations was studied in different biorelevant in vitro assays (i.e. MicroDiss, two-stage, transfer model, tiny-TIM) to consider different aspects of human GI physiology. Data from the two-stage and transfer model tests indicated that by controlled disintegration and dissolution excessive primary precipitation can be prevented. However, this advantage of the mini-tablet and tablet formulation did not translate into better performance in tiny-TIM. Here, the in vitro bioaccessibility was comparable for all three formulations. In the future, the staged biopharmaceutical action plan established herein will support the development of ASD-based pediatric formulations by improving the mechanistic understanding so that formulations are developed for which drug release is robust against variable physiological conditions.
Collapse
Affiliation(s)
- Janis Niessen
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Álvaro López Mármol
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Ruba Ismail
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Julia T Schiele
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Karola Rau
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Andrea Wahl
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Sauer
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Oliver Heinzerling
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany
| | - Mirko Koziolek
- Abbvie Deutschland GmbH & Co. KG, Small Molecule CMC Development, Knollstrasse, Ludwigshafen, Germany.
| |
Collapse
|
6
|
Tsume Y. Evaluation and prediction of oral drug absorption and bioequivalence with food-drug interaction. Drug Metab Pharmacokinet 2023; 50:100502. [PMID: 37001300 DOI: 10.1016/j.dmpk.2023.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
This article reviews the impacts on the in vivo prediction of oral bioavailability (BA) and bioequivalence (BE) based on Biopharmaceutical classification systems (BCS) by the food-drug interaction (food effect) and the gastrointestinal (GI) environmental change. Various in vitro and in silico predictive methodologies have been used to expect the BA and BE of the test oral formulation. Food intake changes the GI physiology and environment, which affect oral drug absorption and its BE evaluation. Even though the pHs and bile acids in the GI tract would have significant influence on drug dissolution and, hence, oral drug absorption, those impacts largely depend on the physicochemical properties of oral medicine, active pharmaceutical ingredients (APIs). BCS class I and III drugs are high soluble drugs in the physiological pH range, food-drug interaction may not affect their BA. On the other hand, BCS class II and IV drugs have pH-dependent solubility, and the more bile acid secretion and the pH changes by food intake might affect their BA. In this report, the GI physiological changes between the fasted and fed states are described and the prediction on the oral drug absorption by food-drug interaction have been introduced.
Collapse
|
7
|
Wu D, Li M. Current State and Challenges of Physiologically Based Biopharmaceutics Modeling (PBBM) in Oral Drug Product Development. Pharm Res 2023; 40:321-336. [PMID: 36076007 DOI: 10.1007/s11095-022-03373-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 01/17/2023]
Abstract
Physiologically based biopharmaceutics modeling (PBBM) emphasizes the integration of physicochemical properties of drug substance and formulation characteristics with system physiological parameters to predict the absorption and pharmacokinetics (PK) of a drug product. PBBM has been successfully utilized in drug development from discovery to postapproval stages and covers a variety of applications. The use of PBBM facilitates drug development and can reduce the number of preclinical and clinical studies. In this review, we summarized the major applications of PBBM, which are classified into six categories: formulation selection and development, biopredictive dissolution method development, biopharmaceutics risk assessment, clinically relevant specification settings, food effect evaluation and pH-dependent drug-drug-interaction risk assessment. The current state of PBBM applications is illustrated with examples from published studies for each category of application. Despite the variety of PBBM applications, there are still many hurdles limiting the use of PBBM in drug development, that are associated with the complexity of gastrointestinal and human physiology, the knowledge gap between the in vitro and the in vivo behavior of drug products, the limitations of model interfaces, and the lack of agreed model validation criteria, among other issues. The challenges and essential considerations related to the use of PBBM are discussed in a question-based format along with the scientific thinking on future research directions. We hope this review can foster open discussions between the pharmaceutical industry and regulatory agencies and encourage collaborative research to fill the gaps, with the ultimate goal to maximize the applications of PBBM in oral drug product development.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Min Li
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
8
|
Anand O, Pepin XJH, Kolhatkar V, Seo P. The Use of Physiologically Based Pharmacokinetic Analyses-in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharm Res 2022; 39:1681-1700. [PMID: 35585448 DOI: 10.1007/s11095-022-03280-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022]
Abstract
The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard. Such a link can aid in constructing a bioequivalence safe space and establishing clinically relevant drug product specifications. PBBM is an important tool to construct a safe space which can be used during the drug product development and lifecycle management. There are several advantages of using the PBBM approach, though there are also a few challenges, both with in vitro methods and in vivo understanding of drug absorption and disposition, that preclude using this approach and therefore further improvements are needed. In this review we have provided an overview of experience gained so far and the current perspective from regulatory and industry point of view. Collaboration between scientists from regulatory, industry and academic fields can further help to advance this field and deliver on promises that PBBM can offer towards establishing patient centric quality standards.
Collapse
Affiliation(s)
- Om Anand
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.
| | - Xavier J H Pepin
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Vidula Kolhatkar
- Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Paul Seo
- Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Kambayashi A, Murano M, Imai S, Miyata K, Sugita K, Fujii Y, Kinoshita M, Nomura A, Kimoto T, Miyazaki Y, Sakakibara H, Kakuda S, Tsujimoto T, Fujita Y, Kano M, Nakamura H, Akaogi S, Honda M, Anraku M, Kamada N, Ohta K, Uchida M, Kataoka M, Kikuchi H, Yamashita S, Kondo H. Interspecies differences in gastrointestinal physiology affecting the in vivo performance of oral pharmaceutical solid dosage forms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Segregur D, Barker R, Mann J, Moir A, Karlsson EM, Turner DB, Arora S, Dressman J. Evaluating the impact of acid-reducing agents on drug absorption using biorelevant in vitro tools and PBPK modeling - case example dipyridamole. Eur J Pharm Sci 2021; 160:105750. [PMID: 33581261 DOI: 10.1016/j.ejps.2021.105750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vitro and in silico methods have become an essential tool in assessing metabolic drug-drug interactions (DDI) and avoiding reduced efficacy and increased side-effects. Another important type of DDI is the impact of acid-reducing agent (ARA) co-therapy on drug pharmacokinetics due to changes in gastric pH, especially for poorly soluble weakly basic drugs. METHODS One-stage, two-stage and transfer dissolution experiments with dipyridamole tablets using novel biorelevant media representing the ARA effect were conducted and the results were coupled with a PBPK model. Clinical pharmacokinetic data were compared with the simulations from the PBPK model and with output from TIM-1 experiments, an evolved in vitro system which aims to simulate the physiology in the upper GI tract. RESULTS Two-stage and transfer experiments confirmed that these in vitro set-ups tend to overestimate the extent of dipyridamole precipitation occurring in the intestines in vivo. Consequently, data from one-stage dissolution testing under elevated gastric pH conditions were used as an input for PBPK modeling of the ARA/dipyridamole interaction. Using media representing the ARA effect in conjunction with the PBPK model, the ARA effect observed in vivo was successfully bracketed. As an alternative, the TIM-1 system with gastric pH values adjusted to simulate ARA pre-treatment can be used to forecast the ARA effect on dipyridamole pharmacokinetics. CONCLUSION Drug-drug interactions of dipyridamole with ARA were simulated well with a combination of dissolution experiments using biorelevant media representing the gastric environment after an ARA treatment together with the PBPK model. Adjustment of the TIM-1 model to reflect ARA-related changes in gastric pH was also successful in forecasting the interaction. Further testing of both approaches for predicting ARA-related DDIs using a wider range of drugs should be conducted to verify their utility for this purpose.
Collapse
Affiliation(s)
- Domagoj Segregur
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438, Frankfurt am Main, Germany
| | - Richard Barker
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - James Mann
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Andrea Moir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Eva M Karlsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - David B Turner
- Certara UK Limited, Simcyp Division, Sheffield, United Kingdom
| | - Sumit Arora
- Certara UK Limited, Simcyp Division, Sheffield, United Kingdom
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, J. W. Goethe University, 9 Max von Laue St., 60438, Frankfurt am Main, Germany; Fraunhofer Institute of Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|