1
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2025; 62:3813-3832. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
2
|
Tsurudome Y, Takahata Y, Morita N, Yamauchi S, Iyoda T, Horiguchi M, Ushijima K. Increased SPARC in brain microvessels of ob/ob mice accelerates molecular transport into the brain accompany with albumin. Life Sci 2024; 355:122990. [PMID: 39154812 DOI: 10.1016/j.lfs.2024.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Cytotoxic metabolites originating from the peripheral circulation can induce central nervous system complications associated with diabetes. Since a large proportion of these metabolites bind to plasma albumin, mechanisms for transporting albumin-metabolite complexes into the brain exist under diabetic conditions. Secreted protein acidic and rich in cysteine (SPARC) is one of the vesicular transport receptors responsible for albumin transport. This study aimed to investigate the changes in SPARC expression and cellular albumin transfer under high-glucose conditions and evaluate the permeability of molecules with high protein-bound properties to the brain tissue. Glucose (30 mM) increased SPARC expression, and intracellular albumin accumulation in NIH3T3 cells. In addition, these changes were observed in the brain of ob/ob mice. Brain microvessels function as a physiological barrier to limit the penetration of molecules from the peripheral blood circulation into the brain by forming tight junctions. Although protein expression of molecules involved in tight junction formation and cell adhesion was increased in the brain microvessels of ob/ob mice, molecular transfer into the brain through cellular junctions was not enhanced. However, Evans blue dye injected into the peripheral vein and endogenous advanced glycation end-products, exerted a high protein-binding property and accumulated in their brains. These observations indicate that peripheral molecules with high protein-binding properties invade the brain tissue and bind to albumin through transcytosis mediated by SPARC.
Collapse
Affiliation(s)
- Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Yumi Takahata
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Nao Morita
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Soma Yamauchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Takuya Iyoda
- Department of Patho-Biochemistry, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Michiko Horiguchi
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan; Department of Pharmaceutical Engineering, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan.
| |
Collapse
|
3
|
Nielsen AKR, Lilieholm-Røngren L, Schmid B, Holst B, Brodin B, Saaby L. Generation of an iPSC-line (BIONi010C-48) with restored P-glycoprotein functionality following transfection with the human MDR1 gene in the AAVS1 locus. Stem Cell Res 2024; 76:103348. [PMID: 38364505 DOI: 10.1016/j.scr.2024.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
The human MDR1 gene encodes the efflux transporter P-glycoprotein, which plays an important part of the blood-brain barrier function of brain microvascular endothelial cells (BMECs). Here, we report the generation of an iPSC line, where a construct of the human MDR1 gene was inserted into the safe-site locus AAVS1. This iPSC line (BIONi010-C-48) shows functional expression of P-gp and can further be differentiated and cultured into electrically tight BMEC-like monolayers exhibiting polarized expression of P-gp in the apical membrane.
Collapse
Affiliation(s)
| | | | | | - Bjørn Holst
- Bioneer A/S, Kogle Alle 2, 2970 Hørsholm, Denmark
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Lasse Saaby
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark; Bioneer A/S, Kogle Alle 2, 2970 Hørsholm, Denmark.
| |
Collapse
|
4
|
Ozgür B, Puris E, Brachner A, Appelt-Menzel A, Oerter S, Balzer V, Holst MR, Christiansen RF, Hyldig K, Buckley ST, Kristensen M, Auriola S, Jensen A, Fricker G, Nielsen MS, Neuhaus W, Brodin B. Characterization of an iPSC-based barrier model for blood-brain barrier investigations using the SBAD0201 stem cell line. Fluids Barriers CNS 2023; 20:96. [PMID: 38115090 PMCID: PMC10731806 DOI: 10.1186/s12987-023-00501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) models based on primary murine, bovine, and porcine brain capillary endothelial cell cultures have long been regarded as robust models with appropriate properties to examine the functional transport of small molecules. However, species differences sometimes complicate translating results from these models to human settings. During the last decade, brain capillary endothelial-like cells (BCECs) have been generated from stem cell sources to model the human BBB in vitro. The aim of the present study was to establish and characterize a human BBB model using human induced pluripotent stem cell (hiPSC)-derived BCECs from the hIPSC line SBAD0201. METHODS The model was evaluated using transcriptomics, proteomics, immunocytochemistry, transendothelial electrical resistance (TEER) measurements, and, finally, transport assays to assess the functionality of selected transporters and receptor (GLUT-1, LAT-1, P-gp and LRP-1). RESULTS The resulting BBB model displayed an average TEER of 5474 ± 167 Ω·cm2 and cell monolayer formation with claudin-5, ZO-1, and occludin expression in the tight junction zones. The cell monolayers expressed the typical BBB markers VE-cadherin, VWF, and PECAM-1. Transcriptomics and quantitative targeted absolute proteomics analyses revealed that solute carrier (SLC) transporters were found in high abundance, while the expression of efflux transporters was relatively low. Transport assays using GLUT-1, LAT-1, and LRP-1 substrates and inhibitors confirmed the functional activities of these transporters and receptors in the model. A transport assay suggested that P-gp was not functionally expressed in the model, albeit antibody staining revealed that P-gp was localized at the luminal membrane. CONCLUSIONS In conclusion, the novel SBAD0201-derived BBB model formed tight monolayers and was proven useful for studies investigating GLUT-1, LAT-1, and LRP-1 mediated transport across the BBB. However, the model did not express functional P-gp and thus is not suitable for the performance of drug efflux P-gp reletated studies.
Collapse
Affiliation(s)
- Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, DK-2500, Denmark
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Andreas Brachner
- AIT - Austrian Institute of Technology GmbH, Vienna, 1210, Austria
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT) Röntgenring 11, 97070, Würzburg, Germany
| | - Sabrina Oerter
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT) Röntgenring 11, 97070, Würzburg, Germany
| | - Viktor Balzer
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | | - Kathrine Hyldig
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, DK-2500, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, DK-8000, Denmark
| | - Stephen T Buckley
- Global Research Technologies, Novo Nordisk A/S, Måløv, DK-2760, Denmark
| | - Mie Kristensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Allan Jensen
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, DK-2500, Denmark
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | - Winfried Neuhaus
- AIT - Austrian Institute of Technology GmbH, Vienna, 1210, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark.
| |
Collapse
|
5
|
Zhuang X, Martin TA, Ruge F, Zeng J(J, Li X(A, Khan E, Dou Q, Davies E, Jiang WG. Expression of Claudin-9 (CLDN9) in Breast Cancer, the Clinical Significance in Connection with Its Subcoat Anchorage Proteins ZO-1 and ZO-3 and Impact on Drug Resistance. Biomedicines 2023; 11:3136. [PMID: 38137355 PMCID: PMC10740911 DOI: 10.3390/biomedicines11123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Introduction: Claudin-9 (CLDN9) is a member of the claudin protein family, a critical transmembrane protein family for tight junctions that are implemented in the progression of numerous cancer types. The present study investigated the role that CLDN9, along with the subcoat proteins, Zonula Occludens (ZOs), plays in clinical breast cancer and subsequent impact on drug response of patients. (2) Methods: CLDN9 protein and CLDN9 transcript were determined and correlated with clinical and pathological indicators, together with the status of hormonal receptors. The levels of CLDN9 transcript were also assessed against the therapeutic responses of the patients to chemotherapies by using a dataset from the TCGA database. Breast cancer cell models, representing different molecular subtypes of breast cancer, with differential expression of CLDN9 were created and used to assess the biological impact and response to chemotherapeutic drugs. (3) Results: Breast cancer tissues expressed significantly higher levels of the CLDN9, with the high levels being associated with shorter survival. CLDN9 was significantly correlated with its anchorage proteins ZO-1 and ZO-3. Integrated expression of CLDN9, ZO-1 and ZO-3 formed a signature that was significantly linked to overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.024) in an independent matter. CLDN9 transcript was significantly higher in patients who were resistant to chemotherapies (p < 0.000001). CLDN9 connection to chemoresistance was particularly prominent in patients of ER-positive (ER(+)), Her-2-negative((Her-2(-)), ER(+)/Her-2(-) and triple-negative breast cancers (TNBCs), but not in patients with HER-2-positive tumors. In Her-2-negative MCF7 and MDA-MB-231 cancer cells, loss of CLDN9 significantly increased sensitivity to several chemotherapeutic drugs including paclitaxel, gemcitabine and methotrexate, which was not seen in Her-2(+) SKBR3 cells. However, suppressing Her-2 using neratinib, a permanent Her-2 inhibitor, sensitized cellular response to these chemodrugs in cells with CLDN9 knockdown. (4) Conclusions: CLDN9 is an important prognostic indicator for patients with breast cancer and also a pivotal factor in assessing patient responses to chemotherapies. Her-2 is a negating factor for the treatment response prediction value by CLDN9 and negating Her-2 and CLDN9 may enhance breast cancer cellular response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xinguo Zhuang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Tracey A. Martin
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Fiona Ruge
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Jianyuan (Jimmy) Zeng
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Xinyu (Amber) Li
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Elyas Khan
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Qingping Dou
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Eleri Davies
- Wales Breast Centre, University Llandough Hospital, Cardiff and Vales University Health Board, Cardiff CF64 2XX, UK;
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| |
Collapse
|
6
|
Holst MR, de Wit NM, Ozgür B, Brachner A, Hyldig K, Appelt-Menzel A, Sleven H, Cader Z, de Vries HE, Neuhaus W, Jensen A, Brodin B, Nielsen MS. Subcellular trafficking and transcytosis efficacy of different receptor types for therapeutic antibody delivery at the blood‒brain barrier. Fluids Barriers CNS 2023; 20:82. [PMID: 37932749 PMCID: PMC10626680 DOI: 10.1186/s12987-023-00480-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Here, we report an experimental setup to benchmark different receptors for targeted therapeutic antibody delivery at the blood-brain barrier. We used brain capillary endothelial-like cells derived from induced pluripotent stem cells (hiPSC-BECs) as a model system and compared them to colon epithelial Caco-2 cells. This approach helped to identify favourable receptors for transport into the cell layer itself or for directing transport for transcytosis across the cell layer. The sorting receptors transferrin receptor and sortilin were shown to be efficient as antibody cargo receptors for intracellular delivery to the cell layer. In contrast, the cell surface receptors CD133 and podocalyxin were identified as static and inefficient receptors for delivering cargo antibodies. Similar to in vivo studies, the hiPSC-BECs maintained detectable transcytotic transport via transferrin receptor, while transcytosis was restricted using sortilin as a cargo receptor. Based on these findings, we propose the application of sortilin as a cargo receptor for delivering therapeutic antibodies into the brain microvascular endothelium.
Collapse
Affiliation(s)
| | - Nienke Marije de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Andreas Brachner
- AIT Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria
| | - Kathrine Hyldig
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Röntgenring 11, Würzburg, Germany
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, Würzburg, Germany
| | - Hannah Sleven
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | - Zameel Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | - Helga Eveline de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria
- Department of Medicine, Faculty Medicine and Dentistry, Private Danube University, 3500, Krems, Austria
| | - Allan Jensen
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Chan AP, Choi Y, Rangan A, Zhang G, Podder A, Berens M, Sharma S, Pirrotte P, Byron S, Duggan D, Schork NJ. Interrogating the Human Diplome: Computational Methods, Emerging Applications, and Challenges. Methods Mol Biol 2023; 2590:1-30. [PMID: 36335489 DOI: 10.1007/978-1-0716-2819-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Human DNA sequencing protocols have revolutionized human biology, biomedical science, and clinical practice, but still have very important limitations. One limitation is that most protocols do not separate or assemble (i.e., "phase") the nucleotide content of each of the maternally and paternally derived chromosomal homologs making up the 22 autosomal pairs and the chromosomal pair making up the pseudo-autosomal region of the sex chromosomes. This has led to a dearth of studies and a consequent underappreciation of many phenomena of fundamental importance to basic and clinical genomic science. We discuss a few protocols for obtaining phase information as well as their limitations, including those that could be used in tumor phasing settings. We then describe a number of biological and clinical phenomena that require phase information. These include phenomena that require precise knowledge of the nucleotide sequence in a chromosomal segment from germline or somatic cells, such as DNA binding events, and insight into unique cis vs. trans-acting functionally impactful variant combinations-for example, variants implicated in a phenotype governed by compound heterozygosity. In addition, we also comment on the need for reliable and consensus-based diploid-context computational workflows for variant identification as well as the need for laboratory-based functional verification strategies for validating cis vs. trans effects of variant combinations. We also briefly describe available resources, example studies, as well as areas of further research, and ultimately argue that the science behind the study of human diploidy, referred to as "diplomics," which will be enabled by nucleotide-level resolution of phased genomes, is a logical next step in the analysis of human genome biology.
Collapse
Affiliation(s)
- Agnes P Chan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Yongwook Choi
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Aditya Rangan
- Courant Institute of Mathematical Sciences at New York University, New York, NY, USA
| | - Guangfa Zhang
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Avijit Podder
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
| | - Michael Berens
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sunil Sharma
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Patrick Pirrotte
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Sara Byron
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Dave Duggan
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA
- The City of Hope National Medical Center, Duarte, CA, USA
| | - Nicholas J Schork
- The Translational Genomics Research Institute (TGen), part of the City of Hope National Medical Center, Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
8
|
Experimental Comparison of Primary and hiPS-Based In Vitro Blood–Brain Barrier Models for Pharmacological Research. Pharmaceutics 2022; 14:pharmaceutics14040737. [PMID: 35456571 PMCID: PMC9031459 DOI: 10.3390/pharmaceutics14040737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
In vitro model systems of the blood–brain barrier (BBB) play an essential role in pharmacological research, specifically during the development and preclinical evaluation of new drug candidates. Within the past decade, the trend in research and further development has moved away from models based on primary cells of animal origin towards differentiated models derived from human induced pluripotent stem cells (hiPSs). However, this logical progression towards human model systems from renewable cell sources opens up questions about the transferability of results generated in the primary cell models. In this study, we have evaluated both models with identical experimental parameters and achieved a directly comparable characterisation showing no significant differences in protein expression or permeability even though the achieved transendothelial electrical resistance (TEER) values showed significant differences. In the course of this investigation, we also determined a significant deviation of both model systems from the in vivo BBB circumstances, specifically concerning the presence or absence of serum proteins in the culture media. Thus, we have further evaluated both systems when confronted with an in vivo-like distribution of serum and found a notable improvement in the differential permeability of hydrophilic and lipophilic compounds in the hiPS-derived BBB model. We then transferred this model into a microfluidic setup while maintaining the differential serum distribution and evaluated the permeability coefficients, which showed good comparability with values in the literature. Therefore, we have developed a microfluidic hiPS-based BBB model with characteristics comparable to the established primary cell-based model.
Collapse
|
9
|
Bay C, Bajraktari-Sylejmani G, Haefeli WE, Burhenne J, Weiss J, Sauter M. Functional Characterization of the Solute Carrier LAT-1 (SLC7A5/SLC2A3) in Human Brain Capillary Endothelial Cells with Rapid UPLC-MS/MS Quantification of Intracellular Isotopically Labelled L-Leucine. Int J Mol Sci 2022; 23:ijms23073637. [PMID: 35408997 PMCID: PMC8998838 DOI: 10.3390/ijms23073637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
The solute carrier L-type amino acid transporter 1 (LAT-1/SLC7A5) is a viable target for drug delivery to the central nervous system (CNS) and tumors due to its high abundance at the blood-brain barrier and in tumor tissue. LAT-1 is only localized on the cell surface as a heterodimer with CD98, which is not required for transporter function. To support future CNS drug-delivery development based on LAT-1 targeting, we established an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay for stable isotopically labeled leucine ([13C6, 15N]-L-leucine), with a dynamic range of 0.1-1000 ng/mL that can be applied for the functional testing of LAT-1 activity when combined with specific inhibitors and, consequently, the LAT-1 inhibition capacity of new compounds. The assay was established in a 96-well format, facilitating high-throughput experiments, and, hence, can support the screening for novel inhibitors. Applicable recommendations of the US Food and Drug Administration and European Medicines Agency for bioanalytical method validation were followed to validate the assay. The assay was applied to investigate the IC50 of two well-known LAT-1 inhibitors on hCMEC/D3 cells: the highly specific LAT-1 inhibitor JPH203, which was also used to demonstrate LAT-1 specific uptake, and the general system L inhibitor BCH. In addition, the [13C6, 15N]-L-leucine uptake was determined on two human brain capillary endothelial cell lines (NKIM-6 and hCMEC/D3), which were characterized for their expressional differences of LAT-1 at the protein and mRNA level and the surface amount of CD98. The IC50 values of the inhibitors were in concordance with previously reported values. Furthermore, the [13C6, 15N]-L-leucine uptake was significantly higher in hCMEC/D3 cells compared to NKIM-6 cells, which correlated with higher expression of LAT-1 and a higher surface amount of CD98. Therefore, the UPLC-MS/MS quantification of ([13C6, 15N]-L-leucine is a feasible strategy for the functional characterization of LAT-1 activity in cells or tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Max Sauter
- Correspondence: ; Tel.: +49-6221-56-32899
| |
Collapse
|
10
|
Espinal ER, Sharp SJ, Kim BJ. Induced Pluripotent Stem Cell (iPSC)-Derived Endothelial Cells to Study Bacterial-Brain Endothelial Cell Interactions. Methods Mol Biol 2022; 2492:73-101. [PMID: 35733039 DOI: 10.1007/978-1-0716-2289-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs when blood-borne bacteria are able to exit the cerebral vasculature and cause inflammation. The blood-brain barrier (BBB) and the meningeal blood-CSF barrier (mBCSFB) are composed of highly specialized brain endothelial cells (BECs) that possess unique phenotypes when compared to their peripheral endothelial counterparts. To cause meningitis, bacterial pathogens must be able to interact and penetrate these specialized BECs to gain access to the CNS. In vitro models have been employed to study bacterial-BEC interactions; however, many lack BEC phenotypes. Induced pluripotent stem cell (iPSC) technologies have enabled the derivation of brain endothelial-like cells that phenocopy BECs in culture. Recently, these iPSC-BECs have been employed to examine the host-pathogen interaction at the endothelial brain barriers. Using two clinically relevant human meningeal pathogens, this chapter describes the use of iPSC-BECs to study various aspects of BEC-bacterial interaction.
Collapse
Affiliation(s)
- Eric R Espinal
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - S Jerod Sharp
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Jacksonville State University, Jacksonville, AL, USA
| | - Brandon J Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
11
|
Salmina AB, Komleva YK, Malinovskaya NA, Morgun AV, Teplyashina EA, Lopatina OL, Gorina YV, Kharitonova EV, Khilazheva ED, Shuvaev AN. Blood-Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. BIOCHEMISTRY (MOSCOW) 2021; 86:746-760. [PMID: 34225598 DOI: 10.1134/s0006297921060122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.
Collapse
Affiliation(s)
- Alla B Salmina
- Division of Brain Sciences, Research Center of Neurology, Moscow, 125367, Russia. .,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yuliya K Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Nataliya A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena A Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yana V Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Ekaterina V Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| |
Collapse
|
12
|
Vigh JP, Kincses A, Ozgür B, Walter FR, Santa-Maria AR, Valkai S, Vastag M, Neuhaus W, Brodin B, Dér A, Deli MA. Transendothelial Electrical Resistance Measurement across the Blood-Brain Barrier: A Critical Review of Methods. MICROMACHINES 2021; 12:mi12060685. [PMID: 34208338 PMCID: PMC8231150 DOI: 10.3390/mi12060685] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023]
Abstract
The blood–brain barrier (BBB) represents the tightest endothelial barrier within the cardiovascular system characterized by very low ionic permeability. Our aim was to describe the setups, electrodes, and instruments to measure electrical resistance across brain microvessels and culture models of the BBB, as well as critically assess the influence of often neglected physical and technical parameters such as temperature, viscosity, current density generated by different electrode types, surface size, circumference, and porosity of the culture insert membrane. We demonstrate that these physical and technical parameters greatly influence the measurement of transendothelial electrical resistance/resistivity (TEER) across BBB culture models resulting in severalfold differences in TEER values of the same biological model, especially in the low-TEER range. We show that elevated culture medium viscosity significantly increases, while higher membrane porosity decreases TEER values. TEER data measured by chopstick electrodes can be threefold higher than values measured by chamber electrodes due to different electrode size and geometry, resulting in current distribution inhomogeneity. An additional shunt resistance at the circumference of culture inserts results in lower TEER values. A detailed description of setups and technical parameters is crucial for the correct interpretation and comparison of TEER values of BBB models.
Collapse
Affiliation(s)
- Judit P. Vigh
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
- Doctoral School of Biology, University of Szeged, 6720 Szeged, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
| | - Burak Ozgür
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (B.O.); (B.B.)
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
| | - Ana Raquel Santa-Maria
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
| | - Sándor Valkai
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
| | - Mónika Vastag
- In Vitro Metabolism Research, Division of Pharmacology and Drug Safety, Gedeon Richter Plc., 1103 Budapest, Hungary;
| | - Winfried Neuhaus
- Center for Health and Bioresources, Competence Unit Molecular Diagnostics, AIT—Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (B.O.); (B.B.)
| | - András Dér
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
- Correspondence: (A.D.); (M.A.D.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (J.P.V.); (A.K.); (F.R.W.); (A.R.S.-M.); (S.V.)
- Correspondence: (A.D.); (M.A.D.)
| |
Collapse
|
13
|
Hinca SB, Salcedo C, Wagner A, Goldeman C, Sadat E, Aibar MMD, Maechler P, Brodin B, Aldana BI, Helms HCC. Brain endothelial cells metabolize glutamate via glutamate dehydrogenase to replenish TCA-intermediates and produce ATP under hypoglycemic conditions. J Neurochem 2020; 157:1861-1875. [PMID: 33025588 DOI: 10.1111/jnc.15207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
The endothelial cells of the blood-brain barrier participate in the regulation of glutamate concentrations in the brain interstitial fluid by taking up brain glutamate. However, endothelial glutamate metabolism has not been characterized, nor is its role in brain glutamate homeostasis and endothelial energy production known. The aim of this study was to investigate endothelial glutamate dehydrogenase (GDH) expression and glutamate metabolism and probe its functional significance. The primary brain endothelial cells were isolated from bovine and mouse brains, and human brain endothelial cells were derived from induced pluripotent stem cells. GDH expression on the protein level and GDH function were investigated in the model systems using western blotting, confocal microscopy, 13 C-glutamate metabolism, and Seahorse assay. In this study, it was shown that GDH was expressed in murine and bovine brain capillaries and in cultured primary mouse and bovine brain endothelial cells as well as in human-induced pluripotent stem cell-derived endothelial cells. The endothelial GDH expression was confirmed in brain capillaries from mice carrying a central nervous system-specific GDH knockout. Endothelial cells from all tested species metabolized 13 C-glutamate to α-ketoglutarate, which subsequently entered the tricarboxylic acid (TCA)-cycle. Brain endothelial cells maintained mitochondrial oxygen consumption rates, when supplied with glutamate alone, whereas glutamate supplied in addition to glucose did not lead to additional oxygen consumption. In conclusion, brain endothelial cells directly take up and metabolize glutamate and utilize the resulting α-ketoglutarate in the tricarboxylic acid cycle to ultimately yield ATP if glucose is unavailable.
Collapse
Affiliation(s)
- Sven B Hinca
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonie Wagner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Goldeman
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edris Sadat
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco M D Aibar
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, CMU, University of Geneva, Geneva, Switzerland
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans C C Helms
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|