1
|
Wang T, Anderson AP, Yu AS, Taub ME, Chan TS. Identification of selective inhibitors of uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A3 and UGT1A8 and their application in UGT reaction phenotyping studies in human liver and intestinal microsomes. Drug Metab Dispos 2025; 53:100058. [PMID: 40347722 DOI: 10.1016/j.dmd.2025.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/27/2025] [Indexed: 05/14/2025] Open
Abstract
Uridine 5'-diphospho-glucuronosyltransferase (UGT) reaction phenotyping studies have posed significant challenges due to the limited availability of isoform-selective inhibitors. This recognized gap in reagent availability impedes the accurate determination of the contribution of specific UGT isoforms to the metabolism of UGT substrates. To address this challenge, 9 antibiotics were evaluated for their potential inhibitory effects on UGT isoforms. We identified 2 macrolide antibiotics, troleandomycin and erythromycin, as potent and selective inhibitors of UGT1A3 and UGT1A8, respectively. The mechanism of UGT inhibition by troleandomycin and erythromycin was investigated using recombinant UGT1A3 (mefenamic acid as probe substrate) and UGT1A8 (7-hydroxy-4-(trifluoromethyl)coumarin and apigenin as probe substrates). The results revealed a mixed-type inhibition mechanism, where troleandomycin and erythromycin allosterically inhibit UGT1A3 and UGT1A8, respectively. A slight positive cooperativity between erythromycin and substrate binding to UGT1A8 and a slight negative cooperativity between troleandomycin and substrate binding to UGT1A3 was observed. At saturating inhibitor concentrations, greater than 90% inhibition of glucuronidation catalyzed by UGT1A3 and UGT1A8 was observed. To validate these findings in human liver microsomes and human intestinal microsomes, telmisartan, a selective substrate of UGT1A3 and UGT1A8, was utilized. Similar to the results in expressed UGT isoforms, troleandomycin selectively inhibited UGT1A3 in human liver microsomes and erythromycin selectively inhibited UGT1A8 in human intestinal microsomes. The identification of these UGT isoform-selective inhibitors provides researchers with important new tools expanding the utility of in vitro UGT reaction phenotyping studies. SIGNIFICANCE STATEMENT: Identification of uridine 5'-diphospho-glucuronosyltransferase (UGT)1A3 (troleandomycin) and UGT1A8 (erythromycin) selective inhibitors addresses an important and heretofore unmet need for in vitro reaction phenotyping studies by facilitating the determination of the contribution of these enzymes to drug glucuronidation in humans.
Collapse
Affiliation(s)
- Ting Wang
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Alyssa P Anderson
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Andrew S Yu
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut; Washington University, St. Louis, Missouri
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Tom S Chan
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut.
| |
Collapse
|
2
|
Hervieu L, Groo AC, Bellien J, Guerrot D, Malzert-Fréon A. Glucuronidation of orally administered drugs and the value of nanocarriers in strategies for its overcome. Pharmacol Ther 2025; 266:108773. [PMID: 39647710 DOI: 10.1016/j.pharmthera.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The gastrointestinal tract (GIT) plays a pivotal role in the absorption of orally administered drugs, with the small intestine serving as the primary site due to its extensive surface area and specialized cell types, including enterocytes and M cells. After oral administration, drugs are generally transported via the portal vein to the liver, where they undergo first-pass metabolism. This process involves various enzymatic reactions, including glucuronidation, facilitated by uridine diphosphate-glucuronosyltransferase (UGT), a major phase 2 reaction in mammalian metabolism. UGTs conjugate glucuronic acid to a wide array of endogenous and exogenous substrates, enhancing their solubility and excretion, but significantly affecting the bioavailability and therapeutic efficacy of drugs. UGT enzymes are ubiquitously distributed across tissues, prominently in the liver, but also in the GIT, kidneys, brain, and other organs where they play crucial roles in xenobiotic metabolism. Species-specific differences in UGT expression and activity impact the selection of animal models for pharmacological studies. Various experimental models - ranging from computational simulations (in silico) to laboratory experiments (in vitro) and animal studies (in vivo) - are employed throughout drug discovery and development to evaluate drug metabolism, including UGT activity. Effective strategies to counter pre-systemic metabolism are critical for improving drug bioavailability. This review explores several approaches including prodrugs, co-administration of specific molecules or use of inhibiting excipients in formulations. Strategies incorporating these excipients in nanoformulations demonstrate notable increases in drug absorption and bioavailability. This review highlights the importance of targeted delivery systems and excipient selection in overcoming metabolic barriers, aiming to optimize drug efficacy and patient outcomes.
Collapse
Affiliation(s)
- Laura Hervieu
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France; Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France
| | - Anne-Claire Groo
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France
| | - Jérémy Bellien
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Pharmacology Department, Rouen University Hospital, 76000 Rouen, France
| | - Dominique Guerrot
- Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France; Nephrology Department, Rouen University Hospital, 76000 Rouen, France
| | | |
Collapse
|
3
|
Rautsola I, Haapala M, Huttunen L, Korhonen O, Sikanen T. Extending the shelf life of HLM chips through freeze-drying of human liver microsomes immobilized onto thiol-ene micropillar arrays. LAB ON A CHIP 2024; 24:4211-4220. [PMID: 39113596 DOI: 10.1039/d4lc00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Microfluidic flow reactors functionalized with immobilized human liver microsomes (HLM chips) represent a powerful tool for drug discovery and development by enabling mechanism-based enzyme inhibition studies under flow-through conditions. Additionally, HLM chips may be exploited in streamlined production of human drug metabolites for subsequent microfluidic in vitro organ models or as metabolite standards for drug safety assessment. However, the limited shelf life of the biofunctionalized microreactors generally poses a major barrier to their commercial adaptation in terms of both storage and shipping. The shelf life of the HLM chips in the wetted state is ca. 2-3 weeks only and requires cold storage at 4 °C. In this study, we developed a freeze-drying method for lyophilization of HLMs that are readily immobilized inside microfluidic pillar arrays made from off-stoichiometric thiol-ene polymer. The success of lyophilization was evaluated by monitoring the cytochrome P450 and UDP-glucuronosyltransferase enzyme activities of rehydrated HLMs for several months post-freeze-drying. By adapting the freeze-drying protocol, the HLM chips could be stored at room temperature (protected from light and moisture) for at least 9 months (n = 2 independent batches) and up to 16 months at best, with recovered enzyme activities within 60-120% of the non-freeze-dried control chips. This is a major improvement over the cold-storage requirement and the limited shelf life of the non-freeze-dried HLM chips, which can significantly ease the design of experiments, decrease energy consumption during storage, and reduce the shipping costs with a view to commercial adaptation.
Collapse
Affiliation(s)
- Iiro Rautsola
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Finland.
| | - Markus Haapala
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Finland.
| | - Leo Huttunen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Finland.
| | - Ossi Korhonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Finland.
- Helsinki Institute of Sustainability Science, University of Helsinki, Finland
| |
Collapse
|
4
|
Michaud M, Nonglaton G, Anxionnaz-Minvielle Z. Wall-Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale-Up. Chembiochem 2024; 25:e202400086. [PMID: 38618870 DOI: 10.1002/cbic.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.
Collapse
Affiliation(s)
- Maïté Michaud
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| | - Guillaume Nonglaton
- Univ. Grenoble Alpes, CEA, LETI, DTIS, Plateforme de Recherche Intégration, fonctionnalisation de Surfaces et Microfabrication (PRISM), F-38000, Grenoble, France
| | - Zoé Anxionnaz-Minvielle
- Univ. Grenoble Alpes, CEA, LITEN, DTCH, Laboratoire Composants et Systèmes Thermiques (LCST), F-38000, Grenoble, France
| |
Collapse
|
5
|
Pihlaja T, Kiiski I, Sikanen T. HLM chip - A microfluidic approach to study the mechanistic basis of cytochrome P450 inhibition using immobilized human liver microsomes. Eur J Pharm Sci 2024; 197:106773. [PMID: 38641124 DOI: 10.1016/j.ejps.2024.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.
Collapse
Affiliation(s)
- Tea Pihlaja
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Finland
| | - Iiro Kiiski
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tiina Sikanen
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Finland.
| |
Collapse
|
6
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Kiiski I, Järvinen P, Ollikainen E, Jokinen V, Sikanen T. The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia in vitro. LAB ON A CHIP 2021; 21:1820-1831. [PMID: 33949410 DOI: 10.1039/d0lc01292k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue oxygen levels are known to be critical to regulation of many cellular processes, including the hepatic metabolism of therapeutic drugs, but its impact is often ignored in in vitro assays. In this study, the material-induced oxygen scavenging property of off-stoichiometric thiol-enes (OSTE) was exploited to create physiologically relevant oxygen concentrations in microfluidic immobilized enzyme reactors (IMERs) incorporating human liver microsomes. This could facilitate rapid screening of, for instance, toxic drug metabolites possibly produced in hypoxic conditions typical for many liver injuries. The mechanism of OSTE-induced oxygen scavenging was examined in depth to enable precise adjustment of the on-chip oxygen concentration with the help of microfluidic flow. The oxygen scavenging rate of OSTE was shown to depend on the type and the amount of the thiol monomer used in the bulk composition, and the surface-to-volume ratio of the chip design, but not on the physical or mechanical properties of the bulk. Our data suggest that oxygen scavenging takes place at the polymer-liquid interface, likely via oxidative reactions of the excess thiol monomers released from the bulk with molecular oxygen. Based on the kinetic constants governing the oxygen scavenging rate in OSTE microchannels, a microfluidic device comprising monolithically integrated oxygen depletion and IMER units was designed and its performance validated with the help of oxygen-dependent metabolism of an antiretroviral drug, zidovudine, which yields a cytotoxic metabolite under hypoxic conditions.
Collapse
Affiliation(s)
- Iiro Kiiski
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| | - Päivi Järvinen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| | - Elisa Ollikainen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| | - Ville Jokinen
- Department of Materials Science and Engineering, School of Chemical Engineering, Aalto University, Espoo, FI-02150, Finland
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), Helsinki, FI-00014, Finland.
| |
Collapse
|