1
|
Mustan F, Ivanova A, Tcholakova S. Taurodeoxycholate Aggregation Explored by Molecular Dynamics: Primary-To-Secondary Micelle Transition and Formation of Mixed Micelles with Fatty Acids. Molecules 2024; 29:5897. [PMID: 39769986 PMCID: PMC11677267 DOI: 10.3390/molecules29245897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Micelles formed by bile salts in aqueous solution are important for the solubilization of hydrophobic molecules in the gastrointestinal tract. The molecular level information about the mechanism and driving forces for primary-to-secondary micelle transition is still missing. In the current study, the micelle formation of 50 mM solutions of taurodeoxycholate (TDC) is studied by atomistic molecular dynamics simulations. It is shown that primary micelles with an aggregation number of 8-10 emerge and persist within the first 50 ns. Then, they coalesce to form secondary micelles with an aggregation number of 19 molecules. This transition is governed by hydrophobic interactions, which significantly decrease the solvent-accessible surface area per molecule in the secondary micelles. The addition of monomers of the sodium salt of fatty acids (FAs), as agents aiding hydrophobic drug delivery, to secondary TDC micelles results in the co-existence of mixed FA-TDC and pure FA micelles. The studied saturated FAs, with chain lengths of C14:0 and C18:0, are incorporated into the micelle core, whereas TDC molecules position themselves around the FAs, forming a shell on the micelle surface. In contrast, the tails of the C18:1 unsaturated fatty acid mix homogeneously with TDC molecules throughout the entire micelle volume. The latter creates a very suitable medium for hosting hydrophobic molecules in the micelles containing unsaturated fatty acids.
Collapse
Affiliation(s)
- Fatmegyul Mustan
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Ave., 1164 Sofia, Bulgaria;
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Agrawal S, Singh GK, Tiwari S. Focused starvation of tumor cells using glucose oxidase: A comprehensive review. Int J Biol Macromol 2024; 281:136444. [PMID: 39389487 DOI: 10.1016/j.ijbiomac.2024.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gireesh K Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya 824236, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
3
|
Pagureva N, Cholakova D, Mitrinova Z, Hristova M, Burdzhiev N, Tcholakova S. Temperature response of sucrose palmitate solutions: Role of ratio between monoesters and diesters. J Colloid Interface Sci 2024; 674:209-224. [PMID: 38925066 DOI: 10.1016/j.jcis.2024.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
HYPOTHESIS Aqueous solutions of long-chain water-soluble sucrose ester surfactants exhibit non-trivial response to temperature variations, revealing a peak in viscosity around 40-50 °C. While previous investigations have explored the structures within sucrose stearate systems at various constant temperatures, a comprehensive understanding of the entire temperature dependence and the underlying molecular factors, contributing to this phenomenon is currently missing. EXPERIMENTS Temperature dependent properties and supramolecular structures formed in aqueous solutions of commercial sucrose palmitate were examined using SAXS/WAXS, DSC, optical microscopy, rheological measurements, NMR, and cryo-TEM. FINDINGS The underlying mechanism governing this unusual behavior is revealed and is shown to relate to the mono- to di-esters ratio in the solutions. Solutions primarily containing sucrose monoesters (monoesters molecules ≳ 98% of all surfactant molecules) exhibit behavior typical of nonionic surfactants, with minimal changes with temperature. In contrast, the coexistence of mono- and di-esters results in the formation of discrete monodisperse diester particles and a network of partially fused diester particles at low temperature. As the temperature approaches the diesters' melting point, wormlike mixed micelles form, causing a viscosity peak. The height of this peak increases significantly with the diester concentration. Further temperature increase leads to fluidization of surfactant tails and formation of branched micelles, while excess diester molecules phase separate into distinct droplets.
Collapse
Affiliation(s)
- N Pagureva
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - D Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Z Mitrinova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - M Hristova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - N Burdzhiev
- Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - S Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| |
Collapse
|
4
|
Vinarov Z. Voices in Molecular Pharmaceutics: Meet Dr. Zahari Vinarov, Who Unites Physical Chemistry and Pharmacy to Tackle Fundamental and Industrial Biopharmaceutical Challenges. Mol Pharm 2023; 20:5949-5951. [PMID: 37753848 DOI: 10.1021/acs.molpharmaceut.3c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Affiliation(s)
- Zahari Vinarov
- Sofia University, Faculty of Chemistry and Pharmacy, Department of Chemical and Pharmaceutical Engineering, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022; 621:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/18/2022]
Abstract
According to the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), bacterial infections are one of the greatest threats to global health, food production, and life expectancy. In this sense, the development of innovative formulations aiming at greater therapeutic efficacy, safety, and shorter treatment duration compared to conventional products is urgently needed. Lipid-based nanocarriers (LBNs) have demonstrated the potential to enhance the effectiveness of available antibiotics. Among them, liposome, nanoemulsion, solid lipid nanoparticle (SLN), and nanostructured lipid carrier (NLC) are the most promising due to their solid technical background for laboratory and industrial production. This review describes recent advances in developing antibiotic-loaded LBNs against susceptible and resistant bacterial strains and biofilm. LBNs revealed to be a promising alternative to deliver antibiotics due to their superior characteristics compared to conventional preparations, including their modified drug release, improved bioavailability, drug protection against chemical or enzymatic degradation, greater drug loading capacity, and biocompatibility. Antibiotic-loaded LBNs can improve current clinical drug therapy, bring innovative products and rescue discarded antibiotics. Thus, antibiotic-loaded LBNs have potential to open a window of opportunities to continue saving millions of lives and prevent the devastating impact of bacterial infection.
Collapse
|
6
|
Kalenikova EI, Gorodetskaya EA, Obolenskaya ON, Shapavo NS, Makarov VG, Medvedev OS. Pharmacokinetics and Tissue Distribution of Oxidized and Reduced Coenzyme Q10 Upon Intravenous Administration. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Krollik K, Lehmann A, Wagner C, Kaidas J, Bülhoff J, Kubas H, Weitschies W. Increasing the Robustness of Biopharmaceutical Precipitation Assays - Part II: Recommendations on the use of FaSSIF. J Pharm Sci 2021; 111:155-163. [PMID: 34461113 DOI: 10.1016/j.xphs.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Biopharmaceutical precipitation assays are an important in vitro tool to characterize the precipitation behavior of weakly basic drugs during their transit from the stomach into the small intestine. To mimic the intestinal fluids more closely, biorelevant media like Fasted State Simulated Intestinal Fluid (FaSSIF) and versions thereof are often applied. When applying UV analytics to measure the drug concentration during the transfer experiments, changes in the UV spectrum of the medium have been observed when FaSSIF was stored over a longer period of time or under accelerated conditions. Therefore, this study aimed at evaluating the stability of FaSSIF under various storage conditions. Furthermore, the impact of stressed FaSSIF on the supersaturation and precipitation behavior of ketoconazole was investigated. As a result of this study, it was demonstrated that the FaSSIF powder composition changes during storage, which, in turn, impacts the supersaturation and precipitation behavior of ketoconazole in in vitro transfer studies. Based on the results of this study, we provide recommendations on the application of FaSSIF in biopharmaceutical precipitation assays with the aim to increase reproducibility and enhance data reliability for those compounds where changing FaSSIF composition may impact the supersaturation and precipitation behavior.
Collapse
Affiliation(s)
- Katharina Krollik
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Straße 3, Greifswald, Germany; Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Andreas Lehmann
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Christian Wagner
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Jonathan Kaidas
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Janina Bülhoff
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Holger Kubas
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, Darmstadt, Germany
| | - Werner Weitschies
- Institute of Pharmacy, Department of Biopharmaceutics and Pharmaceutical Technology, University of Greifswald, Felix-Hausdorff-Straße 3, Greifswald, Germany.
| |
Collapse
|
8
|
Supersaturation and Solubilization upon In Vitro Digestion of Fenofibrate Type I Lipid Formulations: Effect of Droplet Size, Surfactant Concentration and Lipid Type. Pharmaceutics 2021; 13:pharmaceutics13081287. [PMID: 34452248 PMCID: PMC8399075 DOI: 10.3390/pharmaceutics13081287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
Lipid-based formulations (LBF) enhance oral drug absorption by promoting drug solubilization and supersaturation. The aim of the study was to determine the effect of the lipid carrier type, drop size and surfactant concentration on the rate of fenofibrate release in a bicarbonate-based in vitro digestion model. The effect of the lipid carrier was studied by preparing type I LBF with drop size ≈ 2 µm, based on medium-chain triglycerides (MCT), sunflower oil (SFO), coconut oil (CNO) and cocoa butter (CB). The drop size and surfactant concentration effects were assessed by studying MCT and SFO-based formulations with a drop size between 400 nm and 14 µm and surfactant concentrations of 1 or 10%. A filtration through a 200 nm filter followed by HPLC analysis was used to determine the aqueous fenofibrate, whereas lipid digestion was followed by gas chromatography. Shorter-chain triglycerides were key in promoting a faster drug release. The fenofibrate release from long-chain triglyceride formulations (SFO, CNO and CB) was governed by solubilization and was enhanced at a smaller droplet size and higher surfactant concentration. In contrast, supersaturation was observed after the digestion of MCT emulsions. In this case, a smaller drop size and higher surfactant had negative effects: lower peak fenofibrate concentrations and a faster onset of precipitation were observed. The study provides new mechanistic insights on drug solubilization and supersaturation after LBF digestion, and may support the development of new in silico prediction models.
Collapse
|