1
|
Mancino F, Nouri H, Moccaldi N, Arpaia P, Kanoun O. Equivalent Electrical Circuit Approach to Enhance a Transducer for Insulin Bioavailability Assessment. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:533-541. [PMID: 39155919 PMCID: PMC11329217 DOI: 10.1109/jtehm.2024.3425269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024]
Abstract
The equivalent electrical circuit approach is explored to improve a bioimpedance-based transducer for measuring the bioavailability of synthetic insulin already presented in previous studies. In particular, the electrical parameter most sensitive to the variation of insulin amount injected was identified. Eggplants were used to emulate human electrical behavior under a quasi-static assumption guaranteed by a very low measurement time compared to the estimated insulin absorption time. Measurements were conducted with the EVAL-AD5940BIOZ by applying a sinusoidal voltage signal with an amplitude of 100 mV and acquiring impedance spectra in the range [1-100] kHz. 14 units of insulin were gradually administered using a Lilly's Insulin Pen having a 0.4 cm long needle. Modified Hayden's model was adopted as a reference circuit and the electrical component modeling the extracellular fluids was found to be the most insulin-sensitive parameter. The trnasducer achieves a state-of-the-art sensitivity of 225.90 ml1. An improvement of 223 % in sensitivity, 44 % in deterministic error, 7 % in nonlinearity, and 42 % in reproducibility was achieved compared to previous experimental studies. The clinical impact of the transducer was evaluated by projecting its impact on a Smart Insulin Pen for real-time measurement of insulin bioavailability. The wide gain in sensitivity of the bioimpedance-based transducer results in a significant reduction of the uncertainty of the Smart Insulin Pen. Considering the same improvement in in-vivo applications, the uncertainty of the Smart Insulin Pen is decreased from [Formula: see text]l to [Formula: see text]l.Clinical and Translational Impact Statement: A Smart Insulin Pen based on impedance spectroscopy and equivalent electrical circuit approach could be an effective solution for the non-invasive and real-time measurement of synthetic insulin uptake after subcutaneous administration.
Collapse
Affiliation(s)
- Francesca Mancino
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Hanen Nouri
- Department of Electrical Engineering and Information TechnologyChemnitz University of TechnologyChemnitz09107Germany
| | - Nicola Moccaldi
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Pasquale Arpaia
- Department of Electrical Engineering and Information Technology (DIETI)University of Naples Federico IINaples80125Italy
| | - Olfa Kanoun
- Department of Electrical Engineering and Information TechnologyChemnitz University of TechnologyChemnitz09107Germany
| |
Collapse
|
2
|
Iliopoulos F, Tu D, Pence IJ, Li X, Ghosh P, Luke MC, Raney SG, Rantou E, Evans CL. Determining topical product bioequivalence with stimulated Raman scattering microscopy. J Control Release 2024; 367:864-876. [PMID: 38346503 DOI: 10.1016/j.jconrel.2024.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Generic drugs are essential for affordable medicine and improving accessibility to treatments. Bioequivalence (BE) is typically demonstrated by assessing a generic product's pharmacokinetics (PK) relative to a reference-listed drug (RLD). Accurately estimating cutaneous PK (cPK) at or near the site of action can be challenging for locally acting topical products. Certain cPK approaches are available for assessing local bioavailability (BA) in the skin. Stimulated Raman scattering (SRS) microscopy has unique capabilities enabling continuous, high spatial and temporal resolution and quantitative imaging of drugs within the skin. In this paper, we developed an approach based on SRS and a polymer-based standard reference for the evaluation of topical product BA and BE in human skin ex vivo. BE assessment of tazarotene-containing formulations was achieved using cPK parameters obtained within different skin microstructures. The establishment of BE between the RLD and an approved generic product was successfully demonstrated. Interestingly, within the constraints of the current study design the results suggest similar BA between the tested gel formulation and the reference cream formulation, despite the differences in the formulation/dosage form. Another formulation containing polyethylene glycol as the vehicle was demonstrated to be not bioequivalent to the RLD. Compared to using the SRS approach without a standard reference, the developed approach enabled more consistent and reproducible results, which is crucial in BE assessment. The abundant information from the developed approach can help to systematically identify key areas of study design that will enable a better comparison of topical products and support an assessment of BE.
Collapse
Affiliation(s)
- Fotis Iliopoulos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Dandan Tu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Xiaolei Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Markham C Luke
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Elena Rantou
- Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring 20993, MD, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown 02129, MA, USA.
| |
Collapse
|
3
|
Bodenlenz M, Yeoh T, Berstein G, Mathew S, Shah J, Banfield C, Hollingshead B, Steyn SJ, Osgood SM, Beaumont K, Kainz S, Holeček C, Trausinger G, Raml R, Birngruber T. Comparative Study of Dermal Pharmacokinetics Between Topical Drugs Using Open Flow Microperfusion in a Pig Model. Pharm Res 2024; 41:223-234. [PMID: 38158503 PMCID: PMC10879402 DOI: 10.1007/s11095-023-03645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Accurate methods to determine dermal pharmacokinetics are important to increase the rate of clinical success in topical drug development. We investigated in an in vivo pig model whether the unbound drug concentration in the interstitial fluid as determined by dermal open flow microperfusion (dOFM) is a more reliable measure of dermal exposure compared to dermal biopsies for seven prescription or investigational drugs. In addition, we verified standard dOFM measurement using a recirculation approach and compared dosing frequencies (QD versus BID) and dose strengths (high versus low drug concentrations). METHODS Domestic pigs were topically administered seven different drugs twice daily in two studies. On day 7, drug exposures in the dermis were assessed in two ways: (1) dOFM provided the total and unbound drug concentrations in dermal interstitial fluid, and (2) clean punch biopsies after heat separation provided the total concentrations in the upper and lower dermis. RESULTS dOFM showed sufficient intra-study precision to distinguish interstitial fluid concentrations between different drugs, dose frequencies and dose strengths, and had good reproducibility between studies. Biopsy concentrations showed much higher and more variable values. Standard dOFM measurements were consistent with values obtained with the recirculation approach. CONCLUSIONS dOFM pig model is a robust and reproducible method to directly determine topical drug concentration in dermal interstitial fluid. Dermal biopsies were a less reliable measure of dermal exposure due to possible contributions from drug bound to tissue and drug associated with skin appendages.
Collapse
Affiliation(s)
- Manfred Bodenlenz
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thean Yeoh
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Gabriel Berstein
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Shibin Mathew
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA.
| | - Jaymin Shah
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | | | - Brett Hollingshead
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Stefanus J Steyn
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Sarah M Osgood
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Kevin Beaumont
- Pfizer Research Technology Center, 1 Portland St, Cambridge, MA, 02139, USA
| | - Sonja Kainz
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Christian Holeček
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Gert Trausinger
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Reingard Raml
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
| | - Thomas Birngruber
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft M.B.H, Neue Stiftingtalstrasse 2, 8010, Graz, Austria.
| |
Collapse
|
4
|
Moore K, Grégoire S, Eilstein J, Delgado-Charro MB, Guy RH. Reverse Iontophoresis: Noninvasive Assessment of Topical Drug Bioavailability. Mol Pharm 2024; 21:234-244. [PMID: 38060844 PMCID: PMC10762657 DOI: 10.1021/acs.molpharmaceut.3c00791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 01/02/2024]
Abstract
Assessing drug disposition in the skin after the application of a topical formulation is difficult. It is hypothesized that reverse iontophoresis (RI), which can extract charged/polar molecules for monitoring purposes, may provide a noninvasive approach for the assessment of local drug bioavailability. The passive and RI extraction of salicylic acid (SA) and nicotine (NIC) from porcine skin in vitro was assessed after a simple solution of the former and a transdermal patch of the latter had been applied for 24 and 8 h, respectively. Immediately after this "passive skin loading", the amount of drug in the stratum corneum (SC) and "viable" tissue (VT) was measured either (a) after tape-stripping and subsequent solvent extraction of both skin layers or (b) following RI extraction over 4 h. Parallel experiments were then performed in vivo in healthy volunteers; in this case, the VT was not sampled and the skin loading period for NIC was only 4 h. RI extraction of both drugs was significantly higher (in vitro and in vivo) than that achieved passively, and the cumulative RI extraction profiles as a function of time were mathematically analyzed using a straightforward compartmental model. Best-fit estimates of drug amounts in the SC and VT (ASC,0 and AVT,0, respectively) at the end of "loading" and two first-order rate constants describing transfer between the model compartments were then determined. The in vitro predictions of ASC,0 and AVT,0 were in excellent agreement with the experimental results, as was the value of the former in vivo. The rate constants derived from the in vitro and in vivo results were also similar. In summary, the results provide proof-of-concept that the RI method has the potential to noninvasively assess relevant metrics of drug bioavailability in the skin.
Collapse
Affiliation(s)
- Kieran Moore
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Sébastien Grégoire
- L’Oréal
Research and Innovation, 1 Av. Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Joan Eilstein
- L’Oréal
Research and Innovation, 1 Av. Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | | - Richard H. Guy
- Department
of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
Senemar S, Kuzma BA, Ramezanli T, Ghosh P, Raney SG, Rantou E, Stagni G. Bioequivalence Evaluation of Topical Metronidazole Products Using Dermal Microdialysis in New Zealand Rabbits. AAPS PharmSciTech 2023; 24:204. [PMID: 37789133 DOI: 10.1208/s12249-023-02660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Comparative assessment of cutaneous pharmacokinetics (cPK) by dermal microdialysis (dMD) appears to be suitable to evaluate the bioequivalence (BE) of topical dermatological drug products applied to the skin (TDDPs). Although dMD studies in the literature have reported inconclusive BE assessments, we have addressed several methodological deficiencies to improve dMD's capability to assess BE between reference (R) and approved generic (referred to as test (T)) gel and cream products of metronidazole (MTZ). The 90% confidence interval (CI) of the geometric mean ratios for the Ln(AUC0-24) and Ln(Cmax) endpoints was centered within the BE limits of 80-125%. The CIs extended outside this range as the proof-of-principle study was not statistically powered to demonstrate BE (N = 7 rabbits). A power analysis suggests that, with the variability observed in this study, 21 rabbits for the cream and 11 rabbits for the gel would be sufficient to support an evaluation of BE with the 2 probe replicates we used, and only 10 and 5 rabbits would be sufficient to power the study for the cream and gel, respectively, if 4 probe replicates are used for each treatment per rabbit. These results indicate that dMD when properly controlling variables can be used to support BE assessments for TDDPs.
Collapse
Affiliation(s)
- Sharareh Senemar
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 DeKalb Ave., Brooklyn, New York, 11201, USA
| | - Benjamin A Kuzma
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 DeKalb Ave., Brooklyn, New York, 11201, USA
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Tannaz Ramezanli
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elena Rantou
- Division of Biometrics VIII, Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Grazia Stagni
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, 75 DeKalb Ave., Brooklyn, New York, 11201, USA.
| |
Collapse
|
6
|
Schwagerle G, Sharp MJ, Parr A, Schimek D, Mautner SI, Birngruber T. Detailed pharmacokinetic characterization of advanced topical acyclovir formulations with IVPT and in vivo Open Flow Microperfusion. Int J Pharm 2023; 643:123269. [PMID: 37495025 DOI: 10.1016/j.ijpharm.2023.123269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Successful treatment of herpes simplex viruses is currently limited by a lack of effective topical drugs. Commonly used topical acyclovir products only reduce the duration of lesions by a few days. Optimizing topical formulations to achieve an enhanced acyclovir solubility and penetration could increase the efficacy of topically applied acyclovir, but new formulations need to show reliable acyclovir delivery into at least the epidermis/dermis and need to provide sustained acyclovir release for extended time periods. The aim of this study was to compare pharmacokinetic data from in vitro permeation testing (IVPT) and preclinical dermal open flow microperfusion (dOFM) experiments regarding the penetration behavior of different acyclovir formulations relative to the reference product Zovirax® 5% cream. Four test formulations that delivered the best penetration data in IVPT were further tested using continuous dOFM in vivo dermal sampling. The use of dOFM identified one of the four tested formulations to perform significantly better than the other three tested formulations and the reference product. In vivo dOFM data showed differences in the dermal acyclovir concentration that had not been detected by using IVPT. Improved acyclovir delivery to the dermis was likely achieved by the new formulation that uses a much lower drug load compared to the reference product. This optimized formulation was able to achieve a dermal concentration similar to oral application and can thus provide the opportunity of more efficacious topical HSV-1 treatment with less side effects than oral systemic treatment.
Collapse
Affiliation(s)
- Gerd Schwagerle
- Health - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Matthew J Sharp
- Propella Therapeutics, Inc., 367 Freedom Parkway, Suite 130-3, Pittsboro, NC 27312, USA
| | - Alan Parr
- BioCeutics LLC, 1209 Kenbridge Lane, Cary, NC 27511, USA
| | - Denise Schimek
- Health - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Selma I Mautner
- Health - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Health - Institute for Biomedical Research and Technologies, Joanneum Research Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria.
| |
Collapse
|
7
|
Raney SG, Ghosh P, Ramezanli T, Lehman PA, Franz TJ. Cutaneous Pharmacokinetic Approaches to Compare Bioavailability and/or Bioequivalence for Topical Drug Products. Dermatol Clin 2022; 40:319-332. [PMID: 35750415 DOI: 10.1016/j.det.2022.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evaluation of bioequivalence (BE) involves comparing the test product to its reference product in a study whose fundamental scientific principles allow inferring of the clinical performance of the products. Several test methods have been discussed and developed to evaluate topical bioavailability (BA) and BE. Pharmacokinetics-based approaches characterize the rate and extent to which an active ingredient becomes available at or near its site of action in the skin. Such methodologies are considered to be among the most accurate, sensitive, and reproducible approaches for determining the BA or BE of a product.
Collapse
Affiliation(s)
- Sam G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Priyanka Ghosh
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Tannaz Ramezanli
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Paul A Lehman
- QPS Holdings, LLC, 3 Innovation Way, Suite 240, Newark, DE 19711, USA
| | | |
Collapse
|
8
|
Kuzma BA, Senemar S, Ramezanli T, Ghosh P, Raney SG, Stagni G. The dose-duration effect on cutaneous pharmacokinetics of metronidazole from topical dermatological formulations in Yucatan mini-pigs. Eur J Pharm Biopharm 2022; 175:43-52. [DOI: 10.1016/j.ejpb.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/13/2022] [Accepted: 05/01/2022] [Indexed: 11/04/2022]
|
9
|
Kuzma BA, Pence IJ, Greenfield DA, Ho A, Evans CL. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv Drug Deliv Rev 2021; 177:113942. [PMID: 34437983 DOI: 10.1016/j.addr.2021.113942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The biodistribution and pharmacokinetics of drugs are vital to the mechanistic understanding of their efficacy. Measuring antimicrobial drug efficacy has been challenging as plasma drug concentration is used as a surrogate for tissue drug concentration, yet typically does not reflect that at the intended site(s) of action. Utilizing an image-guided approach, it is feasible to accurately quantify the biodistribution and pharmacokinetics within the desired site(s) of action. We outline imaging modalities used in visualizing drug distribution with examples ranging from in vitro cellular drug uptake to clinical treatment of microbial infections. The imaging modalities of interest are: radio-labeling, magnetic resonance, mass spectrometry imaging, computed tomography, fluorescence, and Raman spectroscopy. We outline the progress, limitations, and future outlook for each methodology. Further advances in these optical approaches would benefit patients and researchers alike, as non-invasive imaging could yield more profound insights with a lower clinical burden than invasive measurement approaches used today.
Collapse
Affiliation(s)
- Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Daniel A Greenfield
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA.
| |
Collapse
|
10
|
Pence IJ, Kuzma BA, Brinkmann M, Hellwig T, Evans CL. Multi-window sparse spectral sampling stimulated Raman scattering microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:6095-6114. [PMID: 34745724 PMCID: PMC8547998 DOI: 10.1364/boe.432177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Stimulated Raman scattering (SRS) is a nondestructive and rapid technique for imaging of biological and clinical specimens with label-free chemical specificity. SRS spectral imaging is typically carried out either via broadband methods, or by tuning narrowband ultrafast light sources over narrow spectral ranges thus specifically targeting vibrational frequencies. We demonstrate a multi-window sparse spectral sampling SRS (S4RS) approach where a rapidly-tunable dual-output all-fiber optical parametric oscillator is tuned into specific vibrational modes across more than 1400 cm-1 during imaging. This approach is capable of collecting SRS hyperspectral images either by scanning a full spectrum or by rapidly tuning into select target frequencies, hands-free and automatically, across the fingerprint, silent, and high wavenumber windows of the Raman spectrum. We further apply computational techniques for spectral decomposition and feature selection to identify a sparse subset of Raman frequencies capable of sample discrimination. Here we have applied this novel method to monitor spatiotemporal dynamic changes of active pharmaceutical ingredients in skin, which has particular relevance to topical drug product delivery.
Collapse
Affiliation(s)
- Isaac J Pence
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Benjamin A Kuzma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Tim Hellwig
- Refined Laser Systems GmbH, Münster, Germany
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|