1
|
Chen S, Pan Y, Guo Y, Sun X, Bai X, Liu M, Wang L, Xiao J, Chen C, Ma Y. Integrative bioinformatics and experimental analysis of curcumin's role in regulating ferroptosis to combat osteoporosis. Biochem Biophys Res Commun 2024; 739:150949. [PMID: 39541922 DOI: 10.1016/j.bbrc.2024.150949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
This study utilized bioinformatics and data mining techniques to explore the molecular mechanism of curcumin in treating osteoporosis (OP) through the lens of ferroptosis, thereby identifying novel therapeutic targets. The datasets GSE35958, GSE35956, GSE7429, and GSE7158 were obtained from the Gene Expression Omnibus (GEO) database. GSE35958 and GSE35956 were employed as training sets for data integration, while GSE7429 and GSE7158 served as independent validation sets. Through retrieval from the FerrDb database, iron death-related genes (FRGs) were identified, and the differentially expressed genes (DEGs) were intersected to obtain differentially expressed FRGs (DEFRGs). Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted, followed by the construction of a Protein-Protein Interaction (PPI) network to identify Hub genes. The DGIdb database was utilized to predict candidate drugs associated with the Hub genes, and molecular docking and in vitro experiments confirmed that curcumin targets the Hub genes EGFR and PTGS2.Through in vitro testing of curcumin on BMSC cells, researchers examined cell vitality, iron death, osteogenic differentiation, mineralization, and the impact on EGFR and PTGS2 levels. The analysis yielded 2212 DEGs, 484 FRGs, with 45 FDEGs at the intersection. GO analysis revealed involvement in regulating mitochondrial proteins, amino acid transport across plasma membranes, and protein ubiquitination. KEGG pathway analysis indicated associations with iron death, FoxO signaling, mTOR signaling, cell aging, osteoclast differentiation, and GSH metabolism. Utilizing the MCC algorithm, five Hub genes were identified: MAPK3, PTGS2, TGFB1, CYBB, and EGFR, showing diagnostic potential for iron death. Curcumin displayed affinity for EGFR and PTGS2, mitigating iron-induced effects on BMSCs such as increased reactive oxygen species, Fe3+ levels, and decreased mitochondrial membrane potential. Furthermore, curcumin reversed these effects, suggesting EGFR and PTGS2 as targets for curcumin to inhibit BMSC ferroptosis and potentially delay osteoporosis development. Maintaining iron homeostasis and targeting BMSC ferroptosis could offer therapeutic avenues for iron overload-induced osteoporosis.
Collapse
Affiliation(s)
- Shuangliu Chen
- School of Chinese Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yalan Pan
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Yang Guo
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xiaoxian Sun
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xue Bai
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Lining Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Jiřimutu Xiao
- College of Mongolian Medicine, Inner Mongolia Medical University, China
| | - Cheng Chen
- Jiangyan Hospital Affiliated to Nanjing University of Chinese Medicine, China.
| | - Yong Ma
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, China; Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China; Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China.
| |
Collapse
|
2
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
3
|
Moetlediwa MT, Jack BU, Mazibuko-Mbeje SE, Pheiffer C, Titinchi SJJ, Salifu EY, Ramharack P. Evaluating the Therapeutic Potential of Curcumin and Synthetic Derivatives: A Computational Approach to Anti-Obesity Treatments. Int J Mol Sci 2024; 25:2603. [PMID: 38473849 DOI: 10.3390/ijms25052603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Natural compounds such as curcumin, a polyphenolic compound derived from the rhizome of turmeric, have gathered remarkable scientific interest due to their diverse metabolic benefits including anti-obesity potential. However, curcumin faces challenges stemming from its unfavorable pharmacokinetic profile. To address this issue, synthetic curcumin derivatives aimed at enhancing the biological efficacy of curcumin have previously been developed. In silico modelling techniques have gained significant recognition in screening synthetic compounds as drug candidates. Therefore, the primary objective of this study was to assess the pharmacokinetic and pharmacodynamic characteristics of three synthetic derivatives of curcumin. This evaluation was conducted in comparison to curcumin, with a specific emphasis on examining their impact on adipogenesis, inflammation, and lipid metabolism as potential therapeutic targets of obesity mechanisms. In this study, predictive toxicity screening confirmed the safety of curcumin, with the curcumin derivatives demonstrating a safe profile based on their LD50 values. The synthetic curcumin derivative 1A8 exhibited inactivity across all selected toxicity endpoints. Furthermore, these compounds were deemed viable candidate drugs as they adhered to Lipinski's rules and exhibited favorable metabolic profiles. Molecular docking studies revealed that both curcumin and its synthetic derivatives exhibited favorable binding scores, whilst molecular dynamic simulations showed stable binding with peroxisome proliferator-activated receptor gamma (PPARγ), csyclooxygenase-2 (COX2), and fatty acid synthase (FAS) proteins. The binding free energy calculations indicated that curcumin displayed potential as a strong regulator of PPARγ (-60.2 ± 0.4 kcal/mol) and FAS (-37.9 ± 0.3 kcal/mol), whereas 1A8 demonstrated robust binding affinity with COX2 (-64.9 ± 0.2 kcal/mol). In conclusion, the results from this study suggest that the three synthetic curcumin derivatives have similar molecular interactions to curcumin with selected biological targets. However, in vitro and in vivo experimental studies are recommended to validate these findings.
Collapse
Affiliation(s)
- Marakiya T Moetlediwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | | | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Salam J J Titinchi
- Department of Chemistry, Faculty of Natural Science, University of the Western Cape, Bellville 7535, South Africa
| | - Elliasu Y Salifu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| |
Collapse
|
4
|
Zou C, Chen Q, Li J, Lin X, Xue X, Cai X, Chen Y, Sun Y, Wang S, Zhang Y, Meng J. Identification of potential anti-inflammatory components in Moutan Cortex by bio-affinity ultrafiltration coupled with ultra-performance liquid chromatography mass spectrometry. Front Pharmacol 2024; 15:1358640. [PMID: 38384290 PMCID: PMC10880116 DOI: 10.3389/fphar.2024.1358640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Moutan Cortex (MC) has been used in treating inflammation-associated diseases and conditions in China and other Southeast Asian countries. However, the active components of its anti-inflammatory effect are still unclear. The study aimed to screen and identify potential cyclooxygenase-2 (COX-2) inhibitors in MC extract. The effect of MC on COX-2 was determined in vitro by COX-2 inhibitory assays, followed by bio-affinity ultrafiltration in combination with ultra-performance liquid chromatography-mass spectrometry (BAUF-UPLC-MS). To verify the reliability of the constructed approach, celecoxib was applied as the positive control, in contrast to adenosine which served as the negative control in this study. The bioactivity of the MC components was validated in vitro by COX-2 inhibitor assay and RAW264.7 cells. Their in vivo anti-inflammatory activity was also evaluated using LPS-induced zebrafish inflammation models. Finally, molecular docking was hired to further explore the internal interactions between the components and COX-2 residues. The MC extract showed an evident COX-2-inhibitory effect in a concentration-dependent manner. A total of 11 potential COX-2 inhibitors were eventually identified in MC extract. The COX-2 inhibitory activity of five components, namely, gallic acid (GA), methyl gallate (MG), galloylpaeoniflorin (GP), 1,2,3,6-Tetra-O-galloyl-β-D-glucose (TGG), and 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose (PGG), were validated through both in vitro assays and experiments using zebrafish models. Besides, the molecular docking analysis revealed that the potential inhibitors in MC could effectively inhibit COX-2 by interacting with specific residues, similar to the mechanism of action exhibited by celecoxib. In conclusion, BAUF-UPLC-MS combining the molecular docking is an efficient approach to discover enzyme inhibitors from traditional herbs and understand the mechanism of action.
Collapse
Affiliation(s)
- Caomin Zou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Qianru Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Jiasheng Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Xiguang Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Xingyang Xue
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xinhang Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yicheng Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China
| |
Collapse
|
5
|
Hou L, Zhang L, Yu C, Chen J, Ye X, Zhang F, Linhardt RJ, Chen S, Pan H. One-Pot Self-Assembly of Core-Shell Nanoparticles within Fibers by Coaxial Electrospinning for Intestine-Targeted Delivery of Curcumin. Foods 2023; 12:foods12081623. [PMID: 37107418 PMCID: PMC10137979 DOI: 10.3390/foods12081623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Nanotechniques for curcumin (Cur) encapsulation provided a potential capability to avoid limitations and improve biological activities in food and pharmaceutics. Different from multi-step encapsulation systems, in this study, zein-curcumin (Z-Cur) core-shell nanoparticles could be self-assembled within Eudragit S100 (ES100) fibers through one-pot coaxial electrospinning with Cur at an encapsulation efficiency (EE) of 96% for ES100-zein-Cur (ES100-Z-Cur) and EE of 67% for self-assembled Z-Cur. The resulting structure realized the double protection of Cur by ES100 and zein, which provided both pH responsiveness and sustained release performances. The self-assembled Z-Cur nanoparticles released from fibermats were spherical (diameter 328 nm) and had a relatively uniform distribution (polydispersity index 0.62). The spherical structures of Z-Cur nanoparticles and Z-Cur nanoparticles loaded in ES100 fibermats could be observed by transmission electron microscopy (TEM). Fourier transform infrared spectra (FTIR) and X-ray diffractometer (XRD) revealed that hydrophobic interactions occurred between the encapsulated Cur and zein, while Cur was amorphous (rather than in crystalline form). Loading in the fibermat could significantly enhance the photothermal stability of Cur. This novel one-pot system much more easily and efficiently combined nanoparticles and fibers together, offering inherent advantages such as step economy, operational simplicity, and synthetic efficiency. These core-shell biopolymer fibermats which incorporate Cur can be applied in pharmaceutical products toward the goals of sustainable and controllable intestine-targeted drug delivery.
Collapse
Affiliation(s)
- Lijuan Hou
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Laiming Zhang
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
6
|
Shadid KA, Shakya AK, Naik RR, Al-Qaisi TS, Oriquat GA, Atoom AM, Farah HS. Exploring the Chemical Constituents, Antioxidant, Xanthine Oxidase and COX Inhibitory Activity of Commiphora gileadensis Commonly Grown Wild in Saudi Arabia. Molecules 2023; 28:molecules28052321. [PMID: 36903563 PMCID: PMC10004785 DOI: 10.3390/molecules28052321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The use of the synthetic drugs has increased in the last few decades; however, these drugs exhibit various side effects. Scientists are therefore seeking alternatives from natural sources. Commiphora gileadensis has long been used to treat various disorders. It is commonly known as bisham or balm of Makkah. This plant contains various phytochemicals, including polyphenols and flavonoids, with biological potential. We found that steam-distilled essential oil of C. gileadensis exhibited higher antioxidant activity (IC50, 22.2 µg/mL) than ascorbic acid (IC50, 1.25 µg/mL). The major constituents (>2%) in the essential oil were β-myrcene, nonane, verticiol, β-phellandrene, β-cadinene, terpinen-4-ol, β-eudesmol, α-pinene, cis-β-copaene and verticillol, which might be responsible for the antioxidant and antimicrobial activity against Gram-positive bacteria. The extract of C. gileadensis exhibited inhibitory activity against cyclooxygenase (IC50, 450.1 µg/mL), xanthine oxidase (251.2 µg/mL) and protein denaturation (110.5 µg/mL) compared to standard treatments, making it a viable treatment from a natural plant source. LC-MS analysis revealed the presence of phenolic compounds such as caffeic acid phenyl ester, hesperetin, hesperidin, chrysin and transient amounts of catechin, gallic acid, rutin and caffeic acid. The chemical constituents of this plant can be explored further to investigate its wide variety of therapeutic potential.
Collapse
Affiliation(s)
- Khalid A. Shadid
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K. Shakya
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence: ; Tel.: +962-5-3500211 (ext. 2135)
| | - Rajashri R. Naik
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Talal S. Al-Qaisi
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ghaleb A. Oriquat
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ali M. Atoom
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Husni S. Farah
- Pharmacological and Diagnostic Research Center, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
7
|
Comparative Pharmacokinetic of Curcuminoids Formulations with an Omega-3 Fatty Acids Monoglyceride Carrier: A Randomized Cross-Over Triple-Blind Study. Nutrients 2022; 14:nu14245347. [PMID: 36558506 PMCID: PMC9783836 DOI: 10.3390/nu14245347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
There is a growing interest for curcuminoids in the general population and the scientific research community. Curcuminoids, derived from turmeric spice, are lipophiles and therefore have a low solubility in water which hence have a low bioavailability in the human plasma. To circumvent this issue, a natural product developed by Biodroga Nutraceuticals combined curcuminoids with omega-3 fatty acids (OM3) esterified in monoglycerides (MAG). The objective was to perform a 24 h pharmacokinetics in humans receiving a single dose of curcuminoid formulated by three different means, and to compare their plasma curcuminoids concentration. Sixteen males and fifteen females tested three formulations: 400 mg of curcuminoids powder extract, 400 mg of curcuminoids in rice oil and 400 mg of curcuminoids with 1 g MAG-OM3. Blood samples were collected at 0, 1, 2, 3, 4, 5, 6, 8, 10 and 24 h post dose intake. Plasma samples were analyzed by ultra high-performance liquid chromatography with a triple quadrupole mass spectrometer (UPLC-MS/MS). Twenty-four hours after a single dose intake, the total plasma curcuminoids area under the curve (AUC) reached 166.8 ± 17.8 ng/mL*h, 134.0 ± 12.7 ng/mL*h and 163.1 ± 15.3 ng/mL*h when curcuminoids were provided with MAG-OM3, with rice oil or in powder, respectively. The Cmax of total curcuminoids reached between 11.9-17.7 ng/mL at around 4 h (Tmax). One-hour post-dose, the curcuminoids plasma concentration was 40% higher in participants consuming the MAG-OM3 compared to the other formulations. Thus, in a young population, plasma curcuminoids 24 h pharmacokinetics and its increase shortly after the single dose intake were higher when provided with MAG-OM3 than rice oil.
Collapse
|
8
|
Sanchez C, Zappia J, Lambert C, Foguenne J, Dierckxsens Y, Dubuc JE, Delcour JP, Gothot A, Henrotin Y. Curcuma longa and Boswellia serrata Extracts Modulate Different and Complementary Pathways on Human Chondrocytes In Vitro: Deciphering of a Transcriptomic Study. Front Pharmacol 2022; 13:931914. [PMID: 36034822 PMCID: PMC9403192 DOI: 10.3389/fphar.2022.931914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Objectives:Curcuma longa (CL) and Boswellia serrata (BS) extracts are used to relieve osteoarthritis symptoms. The aim of this in vitro study was to investigate their mechanisms of action at therapeutic plasmatic concentrations on primary human osteoarthritic (OA) chondrocytes. Methods: BS (10–50 μg/ml) and CL (0.4–2 μg/ml corresponding to 1–5 µM of curcumin) were evaluated separately or in combination on primary chondrocytes isolated from 17 OA patients and cultured in alginate beads. Ten patients were used for RNA-sequencing analysis. Proteomic confirmation was performed either by immunoassays in the culture supernatant or by flow cytometry for cell surface markers after 72 h of treatment. Results: Significant gene expression modifications were already observed after 6 h of treatment at the highest dose of CL (2 μg/ml) while BS was significantly effective only after 24 h of treatment irrespective of the concentration tested. The most over-expressed genes by CL were anti-oxidative, detoxifying, and cytoprotective genes involved in the Nrf2 pathway. Down-regulated genes were principally pro-inflammatory cytokines and chemokines. Inversely, BS anti-oxidant/detoxifying activities were related to the activation of Nrf1 and PPARα pathways. BS anti-inflammatory effects were associated with the increase in GDF15, decrease in cholesterol cell intake and fatty acid metabolism-involved genes, and down-regulation of Toll-like receptors (TLRs) activation. Similar to CL, BS down-regulated ADAMTS1, 5, and MMP3, 13 genes expression. The combination of both CL and BS was significantly more effective than CL or BS alone on many genes such as IL-6, CCL2, ADAMTS1, and 5. Conclusion: BS and CL have anti-oxidative, anti-inflammatory, and anti-catabolic activities, suggesting a protective effect of these extracts on cartilage. Even if they share some mechanism of action, the two extracts act mainly on distinct pathways, and with different time courses, justifying their association to treat osteoarthritis.
Collapse
Affiliation(s)
- Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
- *Correspondence: Christelle Sanchez,
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
| | - Cécile Lambert
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
| | - Jacques Foguenne
- Department of Laboratory Hematology, Liege University Hospital, Liege, Belgium
| | | | - Jean-Emile Dubuc
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Cliniques Universitaires de St Luc, Brussels, Belgium
| | | | - André Gothot
- Department of Laboratory Hematology, Liege University Hospital, Liege, Belgium
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, Liège, Belgium
- Center for Interdisciplinary Research on Medicines, University of Liège, Liege, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Marche-en-Famenne, Belgium
| |
Collapse
|
9
|
Wang MM, Li YN, Ming WK, Wu PF, Yi P, Gong ZP, Hao XJ, Yuan CM. Bioassay-guided isolation of human carboxylesterase 2 inhibitory and antioxidant constituents from Laportea bulbifera: Inhibition interactions and molecular mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Zhi TX, Liu KQ, Cai KY, Zhao YC, Li ZW, Wang X, He XH, Sun XY. Anti-Lung Cancer Activities of 1,2,3-Triazole Curcumin Derivatives via Regulation of the MAPK/NF-κB/STAT3 Signaling Pathways. ChemMedChem 2021; 17:e202100676. [PMID: 34773680 DOI: 10.1002/cmdc.202100676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Indexed: 12/21/2022]
Abstract
In this study, a series of curcumin derivatives containing 1,2,3-triazole were designed and synthesized, and their inhibitory activities against the proliferation of lung cancer cells were studied. Compound 5 k (3,4-dichlorobenzyltriazole methyl curcumin) had the best activity against A549 cells, with a half-maximal inhibitory concentration (IC50 ) of 2.27 μM, which was approximately 10 times higher than that of the lead curcumin and higher than that of gefitinib (IC50 =8.64 μM). Western blotting revealed that 5 k increased the phosphorylation levels of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Compound 5 k also promoted the expression of the inhibitor of nuclear factor-κB (IκBα) and decreased that of nuclear factor-κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), and β-catenin. Therefore, 5 k suppresses A549 cell proliferation by activating the mitogen-activated protein kinases and suppressing NF-κB/STAT3 signaling pathways. So, 5 k can potentially be used for treating non-small cell lung cancer.
Collapse
Affiliation(s)
- Tai Xin Zhi
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Kai Qiang Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Kun Yi Cai
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Yu Chao Zhao
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| | - Zhen Wang Li
- College of Animal Science and Technology, Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xin Wang
- College of Animal Science and Technology, Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xin Hua He
- Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Haidian District, Beijing, 100850, China
| | - Xian Yu Sun
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu, China
| |
Collapse
|