1
|
Tomar Y, Baidya M, Chadokiya J, Bhatt S, Singhvi G. An overview of Skp2: a promising new therapeutic target of psoriasis. Expert Opin Ther Targets 2024; 28:689-700. [PMID: 39086205 DOI: 10.1080/14728222.2024.2387604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Psoriasis is a chronic immune-mediated disorder affecting over 2-3% of the population worldwide, significantly impacting quality of life. Despite the availability of various therapeutic interventions, concerns persist regarding lesion recurrence and potential alterations in immune surveillance promoting cancer progression. Recent advancements in understanding cellular and molecular pathways have unveiled key factors in psoriasis etiology, including IL-17, 22, 23, TNF-α, PDE-4, JAK-STAT inhibitors, and AhR agonists. This work explores the potential of S-phase kinase-associated protein 2 (Skp2) as a therapeutic target in psoriasis. AREA COVERED This review covers the current understanding of psoriasis pathophysiology, including immune dysregulation, and the role of keratinocytes and ubiquitin. It also delves into Skp2 role in cell cycle regulation, and its correlation with angiogenesis and ubiquitin in psoriasis. The evolving therapeutic approaches targeting Skp2, including small molecule inhibitors, are also discussed. EXPERT OPINION Targeting Skp2 holds promise for developing novel therapeutic approaches for psoriasis. By modulating Skp2 activity or expression, it may be possible to intervene in inflammatory and proliferative processes underlying the disease. Further research into Skp2 inhibitors and their efficacy in preclinical and clinical settings is warranted to harness the full potential of Skp2 as a therapeutic target in psoriasis management.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Moushumi Baidya
- Department of Pharmacy, Milestones Institute of Pharmaceutical Sciences, Udaipur, Tripura, India
| | - Jay Chadokiya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
2
|
An P, Zhao Q, Hao S, Wang X, Tian J, Ma Z. Recent Advancements and Trends of Topical Drug Delivery Systems in Psoriasis: A Review and Bibliometric Analysis. Int J Nanomedicine 2024; 19:7631-7671. [PMID: 39099792 PMCID: PMC11296365 DOI: 10.2147/ijn.s461514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease where topical therapy is crucial. While various dosage forms have enhanced the efficacy of current treatments, their limited permeability and lack of targeted delivery to the dermis and epidermis remain challenges. We reviewed the evolution of topical therapies for psoriasis and conducted a bibliometric analysis from 1993 to 2023 using a predictive linear regression model. This included a comprehensive statistical and visual evaluation of each model's validity, literature profiles, citation patterns, and collaborations, assessing R variance and mean squared error (MSE). Furthermore, we detailed the structural features and penetration pathways of emerging drug delivery systems for topical treatment, such as lipid-based, polymer-based, metallic nanocarriers, and nanocrystals, highlighting their advantages. This systematic overview indicates that future research should focus on developing novel drug delivery systems characterized by enhanced stability, biocompatibility, and drug-carrying capacity.
Collapse
Affiliation(s)
- Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, People’s Republic of China
| | - Qiyue Zhao
- School of Nursing, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siyu Hao
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Zhiqiang Ma
- Department of Dermatology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
4
|
Zhao Y, Xu J, Shangguan J, Pan H, Lu K, Hu S, Xu H. In situ gel-forming oil as rectally delivering platform of hydrophobic therapeutics for ulcerative colitis therapy. Int J Pharm 2023:123149. [PMID: 37336301 DOI: 10.1016/j.ijpharm.2023.123149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Because of their poor water-soluble properties and non-specific distribution, most hydrophobic therapeutics had limited benefit for patients with ulcerative colitis. Herein, an in-situ oil-based gel has been developed as a rectal delivery vehicle for these therapeutics. In situ gel-forming oil (BBLG) was composed of soybean phosphatidyl choline (40%, w/w), glyceryl dioleate (50%, w/w), and ethanol (10%, w/w). The hydrophobic laquinimod (LAQ) as a model drug was easily dissolved in gel-forming oil and its solubility was reaching to 7 ± 0.1 mg/mL. Importantly, upon contact with the colonic fluids, the gel-forming oil was quickly transited to a semi-solid gel, adhering to the inflamed colon mucosa and forming a protective barrier. Transmission Electron Microscopy showed that the gel network was arranged by the connected lipid spheres and LAQ was non-crystally encapsulated into the lipid spheres. Moreover, the universal adhesive test showed that the adhesive force and the adhesive energy of BBLG toward fresh colon tissues were 711±12 mN and 25 ± 2 J/m2, which was 2.14-fold and 5-fold higher than that of the marketed Poloxamer 407 gel, respectively. Meanwhile, in vivo imaging confirmed that the retention time of BBLG in the colon lumen was more than 8 h after rectal administration. In vivo animal studies showed that BBLG also greatly enhanced the therapeutic impact of LAQ on TNBS-treated rats with ulcerative colitis, as evidenced by reduced disease activity index (DAI) scores and weight loss. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously restored after treatment. Importantly, the gut mucosa barrier was largely repaired without any formation of fibrosis remodeling. Conclusively, in situ liquid gel may be a potential delivery system of hydrophobic medicines for ulcerative colitis.
Collapse
Affiliation(s)
- Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Jiawei Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Jianxun Shangguan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Hanxiao Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Kaili Lu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China.
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; CiXi Biomedical Research Institute of Wenzhou Medical University, China.
| |
Collapse
|
5
|
Kochkina N, Nikitina M, Agafonov M, Delyagina E, Terekhova I. iota-Carrageenan hydrogels for methotrexate delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Chaiyabutr C, Punnakitikashem P, Silpa-archa N, Wongpraprarut C, Chularojanamontri L. The Anti-Psoriatic Efficacy and Safety Profile of Topical and Intralesional Methotrexate: A Literature Review. Clin Cosmet Investig Dermatol 2022; 15:2253-2274. [PMID: 36320927 PMCID: PMC9618255 DOI: 10.2147/ccid.s380218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Methotrexate (MTX) has long been considered the first-line oral systemic pharmacotherapy for psoriasis. The drug has several well-known systemic side effects, such as bone marrow suppression and hepatotoxicity. To avoid them, the use of topical or intralesional administrations of MTX has become an interesting option. With the advent of novel drug delivery systems, especially nanocarriers, the usage of a high-efficacy and safe topical MTX for psoriasis has nearly been attained. This review examined the development, anti-psoriatic efficacy and adverse effects of topical forms of MTX (plain MTX; MTX with chemical enhancer; MTX using nanotechnology; MTX with protein transduction domains; MTX with liquid crystalline systems; and MTX with physical enhancer/laser) and intralesional MTX in psoriasis patients and psoriasis-induced animals. The efficacy of topical MTX varied with the drug delivery technology employed. Nevertheless, the overall safety profile of the topical forms was favourable. A 25 mg/mL MTX solution injected intralesionally at the nail matrix worked well for nail psoriasis recalcitrant to topical treatment. To improve the standard of care for patients with psoriasis, randomized controlled trials that establish the most effective MTX-delivery system are needed.
Collapse
Affiliation(s)
- Chayada Chaiyabutr
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Silpa-archa
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanisada Wongpraprarut
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Leena Chularojanamontri
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand,Correspondence: Leena Chularojanamontri, Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand, Tel +66 2 419 4333, Fax +66 2 411 5031, Email
| |
Collapse
|
7
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1342-1352. [DOI: 10.1093/jpp/rgac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|
8
|
Ethyl Cellulose and Hydroxypropyl Methyl Cellulose Blended Methotrexate-Loaded Transdermal Patches: In Vitro and Ex Vivo. Polymers (Basel) 2021; 13:polym13203455. [PMID: 34685214 PMCID: PMC8539862 DOI: 10.3390/polym13203455] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/01/2023] Open
Abstract
Transdermal drug delivery systems (TDDSs) have become innovative, fascinating drug delivery methods intended for skin application to achieve systemic effects. TDDSs overcome the drawbacks associated with oral and parenteral routes of drug administration. The current investigation aimed to design, evaluate and optimize methotrexate (MTX)-loaded transdermal-type patches having ethyl cellulose (EC) and hydroxypropyl methyl cellulose (HPMC) at different concentrations for the local management of psoriasis. In vitro release and ex vivo permeation studies were carried out for the formulated patches. Various formulations (F1–F9) were developed using different concentrations of HPMC and EC. The F1 formulation having a 1:1 polymer concentration ratio served as the control formulation. ATR–FTIR analysis was performed to study drug–polymer interactions, and it was found that the drug and polymers were compatible with each other. The formulated patches were further investigated for their physicochemical parameters, in vitro release and ex vivo diffusion characteristics. Different parameters, such as surface pH, physical appearance, thickness, weight uniformity, percent moisture absorption, percent moisture loss, folding endurance, skin irritation, stability and drug content uniformity, were studied. From the hydrophilic mixture, it was observed that viscosity has a direct influence on drug release. Among all formulated patches, the F5 formulation exhibited 82.71% drug release in a sustained-release fashion and followed an anomalous non-Fickian diffusion. The permeation data of the F5 formulation exhibited about a 36.55% cumulative amount of percent drug permeated. The skin showed high retention for the F5 formulation (15.1%). The stability study indicated that all prepared formulations had very good stability for a period of 180 days. Therefore, it was concluded from the present study that methotrexate-loaded transdermal patches with EC and HPMC as polymers at different concentrations suit TDDSs ideally and improve patient compliance for the local management of psoriasis.
Collapse
|
9
|
Mohd Nordin UU, Ahmad N, Salim N, Mohd Yusof NS. Lipid-based nanoparticles for psoriasis treatment: a review on conventional treatments, recent works, and future prospects. RSC Adv 2021; 11:29080-29101. [PMID: 35478537 PMCID: PMC9038133 DOI: 10.1039/d1ra06087b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis is a lingering inflammatory skin disease that attacks the immune system. The abnormal interactions between T cells, immune cells, and inflammatory cytokines causing the epidermal thickening. International guidelines have recommended topical treatments for mild to moderate psoriasis whilst systemic and phototherapy treatments for moderate to severe psoriasis. However, current therapeutic approaches have a wider extent to treat moderate to severe type of psoriasis especially since the emergence of diverse biologic agents. In the meantime, topical delivery of conventional treatments has prompted many unsatisfactory effects to penetrate through the skin (stratum corneum). By understanding the physiology of stratum corneum barrier functions, scientists have developed different types of lipid-based nanoparticles like solid lipid nanoparticles, nanostructured lipid carriers, nanovesicles, and nanoemulsions. These novel drug delivery systems help the poorly solubilised active pharmaceutical ingredient reaches the targeted site seamlessly because of the bioavailability feature of the nanosized molecules. Lipid-based nanoparticles for psoriasis treatments create a paradigm for topical drug delivery due to their lipids' amphiphilic feature to efficiently encapsulate both lipophilic and hydrophilic drugs. This review highlights different types of lipid-based nanoparticles and their recent works of nano formulated psoriasis treatments. The encapsulation of psoriasis drugs through lipid nanocarriers unfold numerous research opportunities in pharmaceutical applications but also draw challenges for the future development of nano drugs.
Collapse
Affiliation(s)
- Ummu Umaimah Mohd Nordin
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Nor Saadah Mohd Yusof
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| |
Collapse
|