1
|
Poole CF. Assessment of liquid-liquid partition for the assignment of descriptors for the solvation parameter model. J Chromatogr A 2024; 1721:464850. [PMID: 38564932 DOI: 10.1016/j.chroma.2024.464850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and McGowan's characteristic volume, V, to model transfer properties between condensed phases. The V descriptor is assigned from structure. For compounds liquid at 20 °C the E descriptor can be assigned from the characteristic volume and its refractive index. The E descriptor for compounds solid at 20 °C and the S, A, and B descriptors are experimental properties traditionally assigned from chromatographic, liquid-liquid partition, and solubility measurements. In this report liquid-liquid partition constants in totally organic and aqueous biphasic systems are evaluated as a standalone technique for descriptor assignments. Using six totally organic biphasic systems the S, A, and B descriptors were assigned with an average absolute deviation (AAD) of about 0.04, 0.03, and 0.04, respectively, compared with the best estimate of the true descriptor values for 65 compounds. The E descriptor for compounds solid at 20 °C can only be estimated with an AAD of approximately 0.1. For six aqueous biphasic systems the B descriptor is assigned with a lower AAD of 0.028 and higher AAD of 0.08 and 0.05 for the S and A descriptors, respectively, than for the totally organic biphasic systems for compounds with a reliable value for the E descriptor. The preferred system for descriptor assignments utilizes both totally organic biphasic systems (heptane-1,1,1-trifluoroethanol, isopentyl ether-propylene carbonate, isopentyl ether-ethanolamine, heptane-ethylene glycol, heptane-formamide, and 1,2-dichloroethane-ethylene glycol) and aqueous biphasic systems (octanol-water, cyclohexane-water) with the possible substitution of some systems with alternative systems of similar selectivity. For 55 varied compounds this combination of eight organic and aqueous biphasic systems resulted in an AAD of approximately 0.03, 0.02, and 0.02 for the S, A, and B descriptors compared to the best estimate of the true descriptor value. For 30 compounds solid at 20 °C the AAD for the E descriptor of 0.11 is poorly assigned. The relative average absolute deviation in percent (RAAD) corresponds to 9.7 %, 3.1 %. 4.0 % and 8.3 % for E, S, A, and B, respectively, for the eight biphasic systems. Liquid-liquid partition is compared to reversed-phase liquid and gas chromatography as a standalone technique for descriptor assignments.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
2
|
Nevolianis T, Ahmed RA, Hellweg A, Diedenhofen M, Leonhard K. Blind prediction of toluene/water partition coefficients using COSMO-RS: results from the SAMPL9 challenge. Phys Chem Chem Phys 2023; 25:31683-31691. [PMID: 37987036 DOI: 10.1039/d3cp04077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Accurately predicting partition coefficients log P is crucial for reducing costs and accelerating drug design as it provides valuable information about the bioavailability, pharmacokinetics, and toxicity of different drug candidates. However, the performance of the existing methods is ambiguous, making it unclear whether these methods can be effectively utilized in drug discovery. To assess the performance of these methods, a series of SAMPL challenges have been conducted over the past few years, aiming to enable the development and validation of predictive models. In this study, we present two independent contributions to the SAMPL9 challenge for predicting the toluene/water partition coefficients for 16 molecules. Both submissions, A and B, use the COSMO-RS approach, albeit in slightly different procedures, to compute the transfer free energies from water to toluene of the molecules presented in the challenge, and consequently, their corresponding log P values. Based on the results, COSMO-RS submission A achieves the top position with an R2 value of 0.93 while it ranks second in terms of root-mean-square error (RMSE) with a value of 1.23 log P units. COSMO-RS submission B achieves an R2 value of 0.83 and an RMSE value of 1.48 log P units. Following the challenge, we predict the log P values using a neural network model, which was pre-trained on COSMO-RS data achieving an R2 of 0.92 and RMSE of 1.04 log P units. Compared to previous SAMPL challenges, all contributions displayed large deviations in predicting the toluene/water partition coefficient. These large deviations emphasize that further research is needed to develop accurate and reliable methods for modeling solvent effects on small molecule transfer-free energies.
Collapse
Affiliation(s)
- Thomas Nevolianis
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany.
| | - Raja A Ahmed
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany.
| | - Arnim Hellweg
- BIOVIA, Dassault Systèmes Deutschland GmbH, Am Kabellager 11-15, 51063 Cologne, Germany
| | - Michael Diedenhofen
- BIOVIA, Dassault Systèmes Deutschland GmbH, Am Kabellager 11-15, 51063 Cologne, Germany
| | - Kai Leonhard
- Institute of Technical Thermodynamics, RWTH Aachen University, 52062 Aachen, Germany.
| |
Collapse
|
3
|
Ali HS, Henchman RH. Energy-entropy multiscale cell correlation method to predict toluene-water log P in the SAMPL9 challenge. Phys Chem Chem Phys 2023; 25:27524-27531. [PMID: 37800345 PMCID: PMC11411597 DOI: 10.1039/d3cp03076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The energy-entropy multiscale cell correlation (EE-MCC) method is used to calculate toluene-water log P values of 16 drug molecules in the SAMPL9 physical properties challenge. EE-MCC calculates the free energy, energy and entropy from molecular dynamics (MD) simulations of the water and toluene solutions. Specifically, MCC evaluates entropy by partitioning the system into cells of correlated atoms at multiple length scales and further partitioning the local coordinates into energy wells, yielding vibrational and topographical terms from the energy-well sizes and probabilities. The log P values calculated by EE-MCC using three 200 ns MD simulations have a mean average error of 0.82 and standard error of the mean of 0.97 versus experiment, which is comparable with the best methods entered in SAMPL9. The main contribution to log P is from energy. Less polar drugs have more favourable energies of transfer. The entropy of transfer consists of increased solute vibrational and conformational terms in toluene due to weaker interactions, fewer solute positions in the larger-molecule solvent, reduced water vibrational entropy, negligible change in toluene vibrational entropy, and gains in solvent orientational entropy. The solvent entropy contributions here may be slightly underestimated because software limitations and statistical fluctuations meant that only the first shell could be included while averaged over the whole solution. Nonetheless, such issues will be addressed in future software to offer a general method to calculate entropy directly from MD simulation and to provide molecular understanding or guide system design.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Richard H Henchman
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Zamora WJ, Viayna A, Pinheiro S, Curutchet C, Bisbal L, Ruiz R, Ràfols C, Luque FJ. Prediction of toluene/water partition coefficients in the SAMPL9 blind challenge: assessment of machine learning and IEF-PCM/MST continuum solvation models. Phys Chem Chem Phys 2023; 25:17952-17965. [PMID: 37376995 DOI: 10.1039/d3cp01428b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In recent years the use of partition systems other than the widely used biphasic n-octanol/water has received increased attention to gain insight into the molecular features that dictate the lipophilicity of compounds. Thus, the difference between n-octanol/water and toluene/water partition coefficients has proven to be a valuable descriptor to study the propensity of molecules to form intramolecular hydrogen bonds and exhibit chameleon-like properties that modulate solubility and permeability. In this context, this study reports the experimental toluene/water partition coefficients (log Ptol/w) for a series of 16 drugs that were selected as an external test set in the framework of the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) blind challenge. This external set has been used by the computational community to calibrate their methods in the current edition (SAMPL9) of this contest. Furthermore, the study also investigates the performance of two computational strategies for the prediction of log Ptol/w. The first relies on the development of two machine learning (ML) models, which are built up by combining the selection of 11 molecular descriptors in conjunction with either the multiple linear regression (MLR) or the random forest regression (RFR) model to target a dataset of 252 experimental log Ptol/w values. The second consists of the parametrization of the IEF-PCM/MST continuum solvation model from B3LYP/6-31G(d) calculations to predict the solvation free energies of 163 compounds in toluene and benzene. The performance of the ML and IEF-PCM/MST models has been calibrated against external test sets, including the compounds that define the SAMPL9 log Ptol/w challenge. The results are used to discuss the merits and weaknesses of the two computational approaches.
Collapse
Affiliation(s)
- William J Zamora
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José, Costa Rica.
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José, Costa Rica
- Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José, Costa Rica
| | - Antonio Viayna
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvana Pinheiro
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José, Costa Rica.
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José, Costa Rica
| | - Carles Curutchet
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona (UB), Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Laia Bisbal
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Rebeca Ruiz
- Pion Inc., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Clara Ràfols
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - F Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain.
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
5
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|