1
|
Erbay IH, Alexiadis A, Rochev Y. Computational insights into colonic motility: Mechanical role of mucus in homeostasis and inflammation. Comput Biol Med 2024; 176:108540. [PMID: 38728996 DOI: 10.1016/j.compbiomed.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Colonic motility plays a vital role in maintaining proper digestive function. The rhythmic contractions and relaxations facilitate various types of motor functions that generate both propulsive and non-propulsive motility modes which in turn generate shear stresses on the epithelial surface. However, the interplay between colonic mucus, shear stress, and epithelium remains poorly characterized. Here, we present a colonic computational model that describes the potential roles of mucus and shear stress in both homeostasis and ulcerative colitis (UC). Our model integrates several key features, including the properties of the mucus bilayer and faeces, intraluminal pressure, and crypt characteristics to predict the time-space mosaic of shear stress. We show that the mucus thickness which could vary based on the severity of UC, may significantly reduce the amount of shear stress applied to the colonic crypts and effect faecal velocity. Our model also reveals an important spatial shear stress variance in homeostatic colonic crypts that suggests shear stress may have a modulatory role in epithelial cell migration, differentiation, apoptosis, and immune surveillance. Together, our study uncovers the rather neglected roles of mucus and shear stress in intestinal cellular processes during homeostasis and inflammation.
Collapse
Affiliation(s)
- I H Erbay
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - A Alexiadis
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Y Rochev
- School of Physics, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Venkatesh KP, Brito G, Kamel Boulos MN. Health Digital Twins in Life Science and Health Care Innovation. Annu Rev Pharmacol Toxicol 2024; 64:159-170. [PMID: 37562495 DOI: 10.1146/annurev-pharmtox-022123-022046] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Health digital twins (HDTs) are virtual representations of real individuals that can be used to simulate human physiology, disease, and drug effects. HDTs can be used to improve drug discovery and development by providing a data-driven approach to inform target selection, drug delivery, and design of clinical trials. HDTs also offer new applications into precision therapies and clinical decision making. The deployment of HDTs at scale could bring a precision approach to public health monitoring and intervention. Next steps include challenges such as addressing socioeconomic barriers and ensuring the representativeness of the technology based on the training and validation data sets. Governance and regulation of HDT technology are still in the early stages.
Collapse
|
3
|
Fischer RP, Volpert A, Antonino P, Ahrens TD. Digital patient twins for personalized therapeutics and pharmaceutical manufacturing. Front Digit Health 2024; 5:1302338. [PMID: 38250053 PMCID: PMC10796488 DOI: 10.3389/fdgth.2023.1302338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Digital twins are virtual models of physical artefacts that may or may not be synchronously connected, and that can be used to simulate their behavior. They are widely used in several domains such as manufacturing and automotive to enable achieving specific quality goals. In the health domain, so-called digital patient twins have been understood as virtual models of patients generated from population data and/or patient data, including, for example, real-time feedback from wearables. Along with the growing impact of data science technologies like artificial intelligence, novel health data ecosystems centered around digital patient twins could be developed. This paves the way for improved health monitoring and facilitation of personalized therapeutics based on management, analysis, and interpretation of medical data via digital patient twins. The utility and feasibility of digital patient twins in routine medical processes are still limited, despite practical endeavors to create digital twins of physiological functions, single organs, or holistic models. Moreover, reliable simulations for the prediction of individual drug responses are still missing. However, these simulations would be one important milestone for truly personalized therapeutics. Another prerequisite for this would be individualized pharmaceutical manufacturing with subsequent obstacles, such as low automation, scalability, and therefore high costs. Additionally, regulatory challenges must be met thus calling for more digitalization in this area. Therefore, this narrative mini-review provides a discussion on the potentials and limitations of digital patient twins, focusing on their potential bridging function for personalized therapeutics and an individualized pharmaceutical manufacturing while also looking at the regulatory impacts.
Collapse
|
4
|
Malheiro V, Duarte J, Veiga F, Mascarenhas-Melo F. Exploiting Pharma 4.0 Technologies in the Non-Biological Complex Drugs Manufacturing: Innovations and Implications. Pharmaceutics 2023; 15:2545. [PMID: 38004525 PMCID: PMC10674941 DOI: 10.3390/pharmaceutics15112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The pharmaceutical industry has entered an era of transformation with the emergence of Pharma 4.0, which leverages cutting-edge technologies in manufacturing processes. These hold tremendous potential for enhancing the overall efficiency, safety, and quality of non-biological complex drugs (NBCDs), a category of pharmaceutical products that pose unique challenges due to their intricate composition and complex manufacturing requirements. This review attempts to provide insight into the application of select Pharma 4.0 technologies, namely machine learning, in silico modeling, and 3D printing, in the manufacturing process of NBCDs. Specifically, it reviews the impact of these tools on NBCDs such as liposomes, polymeric micelles, glatiramer acetate, iron carbohydrate complexes, and nanocrystals. It also addresses regulatory challenges associated with the implementation of these technologies and presents potential future perspectives, highlighting the incorporation of digital twins in this field of research as it seems to be a very promising approach, namely for the optimization of NBCDs manufacturing processes.
Collapse
Affiliation(s)
- Vera Malheiro
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
| | - Joana Duarte
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
| | - Francisco Veiga
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.M.); (J.D.); (F.V.)
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300-307 Guarda, Portugal
| |
Collapse
|
5
|
Gan Y, Xu Y, Zhang X, Hu H, Xiao W, Yu Z, Sun T, Zhang J, Wen C, Zheng S. Revisiting Supersaturation of a Biopharmaceutical Classification System IIB Drug: Evaluation via a Multi-Cup Dissolution Approach and Molecular Dynamic Simulation. Molecules 2023; 28:6962. [PMID: 37836805 PMCID: PMC10574532 DOI: 10.3390/molecules28196962] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
As a subclass of the biopharmaceutical classification system (BCS) class II, basic drugs (BCS IIB) exhibit pH-dependent solubility and tend to generate supersaturation in the gastrointestinal tract, leading to less qualified in vitro-in vivo correlation (IVIVC). This study aims to develop a physiologically based multi-cup dissolution approach to improve the evaluation of the supersaturation for a higher quality of IVIVC and preliminarily explores the molecular mechanism of supersaturation and precipitation of ketoconazole affected by Polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA) and hydroxypropyl methyl-cellulose (HPMC). The concentration of ketoconazole in each cup of the dynamic gastrointestinal model (DGIM) was measured using fiber optical probes. Molecular interactions between ketoconazole and PVPVA or HPMC were simulated by Materials Studio. The results demonstrated that PVPVA and HPMC improved and maintained the supersaturation of ketoconazole. PVPVA exhibited superior precipitation inhibitory effect on ketoconazole molecule aggregation due to slightly stronger van der Waals forces as well as unique electrostatic forces, thereby further enhancing in vitro drug absorption, which correlated well with in vivo drug absorption. Compared with a conventional dissolution apparatus paddle method, the DGIM improved the mean prediction error through the IVIVC from 19.30% to 9.96%, reaching the qualification criteria. In conclusion, the physiologically based multi-cup dissolution approach enables improved evaluation of supersaturation in gastrointestinal transportation of BCS IIB drug ketoconazole, enabling screening screen precipitation inhibitors and achieving qualified IVIVC for drug formulation studies.
Collapse
Affiliation(s)
- Yanxiong Gan
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Yaxin Xu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Xue Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Hengrui Medicine Co., Ltd., Nanjing 210009, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China (J.Z.)
| | - Wenke Xiao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China (J.Z.)
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China (J.Z.)
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| | - Shichao Zheng
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.G.); (T.S.)
| |
Collapse
|