1
|
Bishop DVM, Woodhead ZVJ, Watkins KE. Approaches to Measuring Language Lateralisation: An Exploratory Study Comparing Two fMRI Methods and Functional Transcranial Doppler Ultrasound. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:409-431. [PMID: 38911461 PMCID: PMC11192441 DOI: 10.1162/nol_a_00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 06/25/2024]
Abstract
In this exploratory study we compare and contrast two methods for deriving a laterality index (LI) from functional magnetic resonance imaging (fMRI) data: the weighted bootstrapped mean from the LI Toolbox (toolbox method), and a novel method that uses subtraction of activations from homologous regions in left and right hemispheres to give an array of difference scores (mirror method). Data came from 31 individuals who had been selected to include a high proportion of people with atypical laterality when tested with functional transcranial Doppler ultrasound (fTCD). On two tasks, word generation and semantic matching, the mirror method generally gave better agreement with fTCD laterality than the toolbox method, both for individual regions of interest, and for a large region corresponding to the middle cerebral artery. LI estimates from this method had much smaller confidence intervals (CIs) than those from the toolbox method; with the mirror method, most participants were reliably lateralised to left or right, whereas with the toolbox method, a higher proportion were categorised as bilateral (i.e., the CI for the LI spanned zero). Reasons for discrepancies between fMRI methods are discussed: one issue is that the toolbox method averages the LI across a wide range of thresholds. Furthermore, examination of task-related t-statistic maps from the two hemispheres showed that language lateralisation is evident in regions characterised by deactivation, and so key information may be lost by ignoring voxel activations below zero, as is done with conventional estimates of the LI.
Collapse
Affiliation(s)
- Dorothy V. M. Bishop
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V. J. Woodhead
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Kate E. Watkins
- Wellcome Centre for Integrative Neuroimaging, Oxford, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Dadario NB, Tanglay O, Stafford JF, Davis EJ, Young IM, Fonseka RD, Briggs RG, Yeung JT, Teo C, Sughrue ME. Topology of the lateral visual system: The fundus of the superior temporal sulcus and parietal area H connect nonvisual cerebrum to the lateral occipital lobe. Brain Behav 2023; 13:e2945. [PMID: 36912573 PMCID: PMC10097165 DOI: 10.1002/brb3.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Mapping the topology of the visual system is critical for understanding how complex cognitive processes like reading can occur. We aim to describe the connectivity of the visual system to understand how the cerebrum accesses visual information in the lateral occipital lobe. METHODS Using meta-analytic software focused on task-based functional MRI studies, an activation likelihood estimation (ALE) of the visual network was created. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE to identify the hub-like regions of the visual network. Diffusion Spectrum Imaging-based fiber tractography was performed to determine the structural connectivity of these regions with extraoccipital cortices. RESULTS The fundus of the superior temporal sulcus (FST) and parietal area H (PH) were identified as hub-like regions for the visual network. FST and PH demonstrated several areas of coactivation beyond the occipital lobe and visual network. Furthermore, these parcellations were highly interconnected with other cortical regions throughout extraoccipital cortices related to their nonvisual functional roles. A cortical model demonstrating connections to these hub-like areas was created. CONCLUSIONS FST and PH are two hub-like areas that demonstrate extensive functional coactivation and structural connections to nonvisual cerebrum. Their structural interconnectedness with language cortices along with the abnormal activation of areas commonly located in the temporo-occipital region in dyslexic individuals suggests possible important roles of FST and PH in the integration of information related to language and reading. Future studies should refine our model by examining the functional roles of these hub areas and their clinical significance.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Charles Teo
- Cingulum Health, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Omniscient Neurotechnology, Sydney, New South Wales, Australia.,Cingulum Health, Sydney, New South Wales, Australia.,Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Hsu CT, Sato W, Kochiyama T, Nakai R, Asano K, Abe N, Yoshikawa S. Enhanced Mirror Neuron Network Activity and Effective Connectivity during Live Interaction Among Female Subjects. Neuroimage 2022; 263:119655. [PMID: 36182055 DOI: 10.1016/j.neuroimage.2022.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Facial expressions are indispensable in daily human communication. Previous neuroimaging studies investigating facial expression processing have presented pre-recorded stimuli and lacked live face-to-face interaction. Our paradigm alternated between presentations of real-time model performance and pre-recorded videos of dynamic facial expressions to participants. Simultaneous functional magnetic resonance imaging (fMRI) and facial electromyography activity recordings, as well as post-scan valence and arousal ratings were acquired from 44 female participants. Live facial expressions enhanced the subjective valence and arousal ratings as well as facial muscular responses. Live performances showed greater engagement of the right posterior superior temporal sulcus (pSTS), right inferior frontal gyrus (IFG), right amygdala and right fusiform gyrus, and modulated the effective connectivity within the right mirror neuron system (IFG, pSTS, and right inferior parietal lobule). A support vector machine algorithm could classify multivoxel activation patterns in brain regions involved in dynamic facial expression processing in the mentalizing networks (anterior and posterior cingulate cortex). These results indicate that live social interaction modulates the activity and connectivity of the right mirror neuron system and enhances spontaneous mimicry, further facilitating emotional contagion.
Collapse
Affiliation(s)
- Chun-Ting Hsu
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan..
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan..
| | - Takanori Kochiyama
- Brain Activity Imaging Center, ATR- Promotions, Inc., 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Kohei Asano
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan; Department of Children Education, Osaka University of Comprehensive Children Education, 6-chome-4-26 Yuzato, Higashisumiyoshi Ward, Osaka, 546-0013, Japan
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Sakiko Yoshikawa
- Institute of Philosophy and Human Values, Kyoto University of the Arts, 2-116 Uryuyama Kitashirakawa, Sakyo, Kyoto, Kyoto 606-8271, Japan
| |
Collapse
|
4
|
Menks WM, Ekerdt C, Janzen G, Kidd E, Lemhöfer K, Fernández G, McQueen JM. Study protocol: a comprehensive multi-method neuroimaging approach to disentangle developmental effects and individual differences in second language learning. BMC Psychol 2022; 10:169. [PMID: 35804430 PMCID: PMC9270835 DOI: 10.1186/s40359-022-00873-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/ ). METHODS We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1-weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning. DISCUSSION This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
Collapse
Affiliation(s)
- W M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands.
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
| | - C Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - G Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - E Kidd
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- ARC Centre of Excellence for the Dynamics of Language, Canberra, Australia
- Research School of Psychology, Australian National University, Canberra, Australia
| | - K Lemhöfer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - G Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Wei DY, O'Daly O, Zelaya FO, Goadsby PJ. Areas of cerebral blood flow changes on arterial spin labelling with the use of symmetric template during nitroglycerin triggered cluster headache attacks. Neuroimage Clin 2022; 33:102920. [PMID: 34972033 PMCID: PMC8724947 DOI: 10.1016/j.nicl.2021.102920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Cluster headache is a severe unilateral primary headache disorder; however, the brain is asymmetric, therefore using a symmetric template before flipping in the x-axis allows for ipsilateral analysis of attacks without loss of coherence across the group. Increases in cerebral blood flow beyond pain anticipation, processing and modulation areas, including hypothalamic regions and ipsilateral pons, have a crucial pathophysiological role in cluster headache attacks. The pain experienced during cluster headache attacks is so severe that it “switches off” areas involved in the default brain network.
Background Cluster headache is a rare, strictly unilateral, severe episodic primary headache disorder. Due to the unpredictable and episodic nature of the attacks, nitroglycerin has been used to trigger attacks for research purposes to further our understanding of cluster headache pathophysiology. Objectives We aimed to identify regions of significant cerebral blood flow (CBF) changes during nitroglycerin triggered cluster headache attacks, using MRI with arterial spin labelling (ASL). Methods Thirty-three subjects aged 18–60 years with episodic and chronic cluster headache were recruited and attended an open clinical screening visit without scanning to receive an intravenous nitroglycerin infusion (0.5 μg/kg/min over 20 min). Those for whom nitroglycerin successfully triggered a cluster headache attack, were invited to attend two subsequent scanning visits. They received either single-blinded intravenous nitroglycerin (0.5 μg/kg/min) or an equivalent volume of single-blinded intravenous 0.9% sodium chloride over a 20-minute infusion. Whole-brain CBF maps were acquired using a 3 Tesla MRI scanner pre-infusion and post-infusion. As cluster headache is a rare condition and purely unilateral disorder, an analysis strategy to ensure all the image data corresponded to symptomatology in the same hemisphere, without losing coherence across the group, was adopted. This consisted of spatially normalising all CBF maps to a standard symmetric reference template before flipping the images about the anterior-posterior axis for those CBF maps of subjects who experienced their headache in the right hemisphere. This procedure has been employed in previous studies and generated a group data set with expected features on the left hemisphere only. Results Twenty-two subjects successfully responded to the nitroglycerin infusion and experienced triggered cluster headache attacks. A total of 20 subjects completed the placebo scanning visit, 20 completed the nitroglycerin scanning visit, and 18 subjects had completed both the nitroglycerin and placebo scanning visits. In a whole-brain analysis, we identified regions of significantly elevated CBF in the medial frontal gyrus, superior frontal gyrus, inferior frontal gyrus and cingulate gyrus, ipsilateral to attack side, in CBF maps acquired during cluster headache attack; compared with data from the placebo session. We also identified significantly reduced CBF in the precuneus, cuneus, superior parietal lobe and occipital lobe contralateral to the attack side. Of particular interest to this field of investigation, both the hypothalamus and ipsilateral ventral pons showed higher CBF in a separate region of interest analysis. Conclusion Our data demonstrate that severe cluster headache leads to significant increases in regional cerebral perfusion, likely to reflect changes in neuronal activity in several regions of the brain, including the hypothalamus and the ventral pons. These data contribute to our understanding of cluster headache pathophysiology; and suggest that non-invasive ASL technology may be valuable in future mechanistic studies of this debilitating condition.
Collapse
Affiliation(s)
- Diana Y Wei
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, UK; NIHR Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, UK; NIHR Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined.
Collapse
|
7
|
Batouli SAH, Alemi R, Khoshkhouy Delshad H, Oghabian MA. The influence of mental fatigue on the face and word encoding activations. Clin Neurol Neurosurg 2020; 189:105626. [DOI: 10.1016/j.clineuro.2019.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
|
8
|
Degrees of lateralisation in semantic cognition: Evidence from intrinsic connectivity. Neuroimage 2019; 202:116089. [DOI: 10.1016/j.neuroimage.2019.116089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/27/2019] [Accepted: 08/08/2019] [Indexed: 11/15/2022] Open
|
9
|
Sato W, Kochiyama T, Uono S, Sawada R, Kubota Y, Yoshimura S, Toichi M. Widespread and lateralized social brain activity for processing dynamic facial expressions. Hum Brain Mapp 2019; 40:3753-3768. [PMID: 31090126 DOI: 10.1002/hbm.24629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 11/07/2022] Open
Abstract
Dynamic facial expressions of emotions constitute natural and powerful means of social communication in daily life. A number of previous neuroimaging studies have explored the neural mechanisms underlying the processing of dynamic facial expressions, and indicated the activation of certain social brain regions (e.g., the amygdala) during such tasks. However, the activated brain regions were inconsistent across studies, and their laterality was rarely evaluated. To investigate these issues, we measured brain activity using functional magnetic resonance imaging in a relatively large sample (n = 51) during the observation of dynamic facial expressions of anger and happiness and their corresponding dynamic mosaic images. The observation of dynamic facial expressions, compared with dynamic mosaics, elicited stronger activity in the bilateral posterior cortices, including the inferior occipital gyri, fusiform gyri, and superior temporal sulci. The dynamic facial expressions also activated bilateral limbic regions, including the amygdalae and ventromedial prefrontal cortices, more strongly versus mosaics. In the same manner, activation was found in the right inferior frontal gyrus (IFG) and left cerebellum. Laterality analyses comparing original and flipped images revealed right hemispheric dominance in the superior temporal sulcus and IFG and left hemispheric dominance in the cerebellum. These results indicated that the neural mechanisms underlying processing of dynamic facial expressions include widespread social brain regions associated with perceptual, emotional, and motor functions, and include a clearly lateralized (right cortical and left cerebellar) network like that involved in language processing.
Collapse
Affiliation(s)
- Wataru Sato
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | | | - Shota Uono
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Reiko Sawada
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Shiga, Japan
| | - Sayaka Yoshimura
- Department of Neurodevelopmental Psychiatry, Habilitation and Rehabilitation, Kyoto University, Kyoto, Japan
| | - Motomi Toichi
- Faculty of Human Health Science, Kyoto University, Kyoto, Japan.,The Organization for Promoting Neurodevelopmental Disorder Research, Kyoto, Japan
| |
Collapse
|
10
|
Word inversion sensitivity as a marker of visual word form area lateralization: An application of a novel multivariate measure of laterality. Neuroimage 2019; 191:493-502. [PMID: 30807821 DOI: 10.1016/j.neuroimage.2019.02.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
An area within the ventral occipitotemporal cortex (vOTC), the "visual word form area" (VWFA), typically exhibits a strongly left-lateralized response to orthographic stimuli in skilled readers. While individual variation in VWFA lateralization has been observed, the behavioral significance of laterality differences remains unclear. Here, we test the hypothesis that differences in VWFA lateralization reflect differing preferences for holistic orthographic analysis. To examine this hypothesis, we implemented a new multivariate method that uses machine learning to assess functional lateralization, along with a traditional univariate lateralization method. We related these neural metrics to behavioral indices of holistic orthographic analysis (inversion sensitivity). The multivariate measure successfully detected the lateralization of orthographic processing in the VWFA, and as hypothesized, predicted behavioral differences in holistic orthographic analysis. An exploratory whole brain analysis identified further regions with a relationship between inversion sensitivity and lateralization: one near the junction of the inferior frontal and precentral sulci, and another along the superior temporal gyrus. We conclude that proficient native readers of English exhibit differences in cortical lateralization of the VWFA that have significant implications for reading behavior.
Collapse
|
11
|
Alemi R, Batouli SAH, Behzad E, Ebrahimpoor M, Oghabian MA. Not single brain areas but a network is involved in language: Applications in presurgical planning. Clin Neurol Neurosurg 2018; 165:116-128. [PMID: 29334640 DOI: 10.1016/j.clineuro.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. PATIENTS AND METHODS In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. RESULTS The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. CONCLUSION This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Otorhinolaryngology, Faculty of Medicine, McGill University, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Ebrahimpoor
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zago L, Hervé PY, Genuer R, Laurent A, Mazoyer B, Tzourio-Mazoyer N, Joliot M. Predicting hemispheric dominance for language production in healthy individuals using support vector machine. Hum Brain Mapp 2017; 38:5871-5889. [PMID: 28868791 DOI: 10.1002/hbm.23770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/16/2023] Open
Abstract
We used a Support Vector Machine (SVM) classifier to assess hemispheric pattern of language dominance of 47 individuals categorized as non-typical for language from their hemispheric functional laterality index (HFLI) measured on a sentence minus word-list production fMRI-BOLD contrast map. The SVM classifier was trained at discriminating between Dominant and Non-Dominant hemispheric language production activation pattern on a group of 250 participants previously identified as Typicals (HFLI strongly leftward). Then, SVM was applied to each hemispheric language activation pattern of 47 non-typical individuals. The results showed that at least one hemisphere (left or right) was found to be Dominant in every, except 3 individuals, indicating that the "dominant" type of functional organization is the most frequent in non-typicals. Specifically, left hemisphere dominance was predicted in all non-typical right-handers (RH) and in 57.4% of non-typical left-handers (LH). When both hemisphere classifications were jointly considered, four types of brain patterns were observed. The most often predicted pattern (51%) was left-dominant (Dominant left-hemisphere and Non-Dominant right-hemisphere), followed by right-dominant (23%, Dominant right-hemisphere and Non-Dominant left-hemisphere) and co-dominant (19%, 2 Dominant hemispheres) patterns. Co-non-dominant was rare (6%, 2 Non-Dominant hemispheres), but was normal variants of hemispheric specialization. In RH, only left-dominant (72%) and co-dominant patterns were detected, while for LH, all types were found, although with different occurrences. Among the 10 LH with a strong rightward HFLI, 8 had a right-dominant brain pattern. Whole-brain analysis of the right-dominant pattern group confirmed that it exhibited a functional organization strictly mirroring that of left-dominant pattern group. Hum Brain Mapp 38:5871-5889, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laure Zago
- Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France
| | - Pierre-Yves Hervé
- Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France
| | - Robin Genuer
- Université de Bordeaux, ISPED, Centre INSERM U-1219, F-33000 Bordeaux, France.,INSERM, ISPED, Centre INSERM U-1219, F-33000 Bordeaux, France
| | - Alexandre Laurent
- Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France
| | - Bernard Mazoyer
- Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France
| | - Nathalie Tzourio-Mazoyer
- Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France
| | - Marc Joliot
- Université de Bordeaux, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France.,CEA, Institut des Maladies Neurodégéneratives, UMR 5293, Groupe d'Imagerie Neurofonctionnelle, F-33000 Bordeaux, France
| |
Collapse
|
13
|
Bradshaw AR, Bishop DVM, Woodhead ZVJ. Methodological considerations in assessment of language lateralisation with fMRI: a systematic review. PeerJ 2017; 5:e3557. [PMID: 28713656 PMCID: PMC5508809 DOI: 10.7717/peerj.3557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/18/2017] [Indexed: 11/20/2022] Open
Abstract
The involvement of the right and left hemispheres in mediating language functions has been measured in a variety of ways over the centuries since the relative dominance of the left hemisphere was first known. Functional magnetic resonance imaging (fMRI) presents a useful non-invasive method of assessing lateralisation that is being increasingly used in clinical practice and research. However, the methods used in the fMRI laterality literature currently are highly variable, making systematic comparisons across studies difficult. Here we consider the different methods of quantifying and classifying laterality that have been used in fMRI studies since 2000, with the aim of determining which give the most robust and reliable measurement. Recommendations are made with a view to informing future research to increase standardisation in fMRI laterality protocols. In particular, the findings reinforce the importance of threshold-independent methods for calculating laterality indices, and the benefits of assessing heterogeneity of language laterality across multiple regions of interest and tasks. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/hyvc4/.
Collapse
Affiliation(s)
- Abigail R Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V J Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review. Cortex 2017; 86:314-339. [DOI: 10.1016/j.cortex.2016.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
|
15
|
Piervincenzi C, Petrilli A, Marini A, Caulo M, Committeri G, Sestieri C. Multimodal assessment of hemispheric lateralization for language and its relevance for behavior. Neuroimage 2016; 142:351-370. [DOI: 10.1016/j.neuroimage.2016.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022] Open
|
16
|
Hougaard A, Jensen BH, Amin FM, Rostrup E, Hoffmann MB, Ashina M. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation. PLoS One 2015; 10:e0126477. [PMID: 25985078 PMCID: PMC4436141 DOI: 10.1371/journal.pone.0126477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, DK-2600, Denmark
| | - Bettina Hagström Jensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, DK-2600, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, DK-2600, Denmark
| | - Egill Rostrup
- Functional Imaging Unit and Department of Diagnostics, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, DK-2600, Denmark
| | - Michael B. Hoffmann
- Visual Processing Laboratory, Ophthalmic Department, Otto-von-Guericke-University, Magdeburg, 39106, Germany
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, DK-2600, Denmark
- * E-mail:
| |
Collapse
|
17
|
Carey DP, Johnstone LT. Quantifying cerebral asymmetries for language in dextrals and adextrals with random-effects meta analysis. Front Psychol 2014; 5:1128. [PMID: 25408673 PMCID: PMC4219560 DOI: 10.3389/fpsyg.2014.01128] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/16/2014] [Indexed: 12/31/2022] Open
Abstract
Speech and language-related functions tend to depend on the left hemisphere more than the right in most right-handed (dextral) participants. This relationship is less clear in non-right handed (adextral) people, resulting in surprisingly polarized opinion on whether or not they are as lateralized as right handers. The present analysis investigates this issue by largely ignoring methodological differences between the different neuroscientific approaches to language lateralization, as well as discrepancies in how dextral and adextral participants were recruited or defined. Here we evaluate the tendency for dextrals to be more left hemisphere dominant than adextrals, using random effects meta analyses. In spite of several limitations, including sample size (in the adextrals in particular), missing details on proportions of groups who show directional effects in many experiments, and so on, the different paradigms all point to proportionally increased left hemispheric dominance in the dextrals. These results are analyzed in light of the theoretical importance of these subtle differences for understanding the cognitive neuroscience of language, as well as the unusual asymmetry in most adextrals.
Collapse
Affiliation(s)
- David P Carey
- Perception, Action and Memory Research Group, School of Psychology, Bangor University Bangor, UK
| | - Leah T Johnstone
- Perception, Action and Memory Research Group, School of Psychology, Bangor University Bangor, UK
| |
Collapse
|
18
|
Hougaard A, Amin FM, Hoffmann MB, Rostrup E, Larsson HB, Asghar MS, Larsen VA, Olesen J, Ashina M. Interhemispheric differences of fMRI responses to visual stimuli in patients with side-fixed migraine aura. Hum Brain Mapp 2014; 35:2714-23. [PMID: 24038870 PMCID: PMC6869529 DOI: 10.1002/hbm.22361] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/24/2013] [Accepted: 06/24/2013] [Indexed: 01/07/2023] Open
Abstract
Migraine sufferers with aura often report photosensitivity and visual discomfort outside of attacks and many consider bright or flickering light an attack-precipitating factor. The nature of this visual hypersensitivity and its relation to the underlying pathophysiology of the migraine aura is unknown. Using fMRI measurements during visual stimulation we examined the visual cortical responsiveness of patients with migraine with aura. We applied a within-patient design by assessing functional interhemispheric differences in patients consistently experiencing visual aura in the same visual hemifield. We recruited 20 patients with frequent side-fixed visual aura attacks (≥90% of auras occurring in the same visual hemifield) and 20 age and sex matched healthy controls and compared the fMRI blood oxygenation level dependent (BOLD) responses to visual stimulation between symptomatic and asymptomatic hemispheres during the interictal phase and between migraine patients and controls. BOLD responses were selectively increased in the symptomatic hemispheres. This was found in the inferior parietal lobule (P = 0.002), the inferior frontal gyrus (P = 0.003), and the superior parietal lobule (P = 0.017). The affected cortical areas comprise a visually driven functional network involved in oculomotor control, guidance of movement, motion perception, visual attention, and visual spatial memory. The patients also had significantly increased response in the same cortical areas when compared to controls (P < 0.05). We discovered a lateralized alteration of a visually driven functional network in patients with side-fixed aura. These findings suggest a hyperexcitability of the visual system in the interictal phase of migraine with visual aura.
Collapse
Affiliation(s)
- Anders Hougaard
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Michael B. Hoffmann
- Visual Processing Laboratory, Ophthalmic DepartmentOtto‐von‐Guericke‐University MagdeburgGermany
- Center for Behavioral Brain SciencesOtto-von-Guericke-University MagdeburgGermany
| | - Egill Rostrup
- Functional Imaging Unit and Department of Diagnostics, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Henrik B.W. Larsson
- Functional Imaging Unit and Department of Diagnostics, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Mohammad Sohail Asghar
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | | | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| |
Collapse
|
19
|
Inubushi T, Sakai KL. Functional and anatomical correlates of word-, sentence-, and discourse-level integration in sign language. Front Hum Neurosci 2013; 7:681. [PMID: 24155706 PMCID: PMC3804906 DOI: 10.3389/fnhum.2013.00681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/27/2013] [Indexed: 11/17/2022] Open
Abstract
In both vocal and sign languages, we can distinguish word-, sentence-, and discourse-level integration in terms of hierarchical processes, which integrate various elements into another higher level of constructs. In the present study, we used magnetic resonance imaging and voxel-based morphometry (VBM) to test three language tasks in Japanese Sign Language (JSL): word-level (Word), sentence-level (Sent), and discourse-level (Disc) decision tasks. We analyzed cortical activity and gray matter (GM) volumes of Deaf signers, and clarified three major points. First, we found that the activated regions in the frontal language areas gradually expanded in the dorso-ventral axis, corresponding to a difference in linguistic units for the three tasks. Moreover, the activations in each region of the frontal language areas were incrementally modulated with the level of linguistic integration. These dual mechanisms of the frontal language areas may reflect a basic organization principle of hierarchically integrating linguistic information. Secondly, activations in the lateral premotor cortex and inferior frontal gyrus were left-lateralized. Direct comparisons among the language tasks exhibited more focal activation in these regions, suggesting their functional localization. Thirdly, we found significantly positive correlations between individual task performances and GM volumes in localized regions, even when the ages of acquisition (AOAs) of JSL and Japanese were factored out. More specifically, correlations with the performances of the Word and Sent tasks were found in the left precentral/postcentral gyrus and insula, respectively, while correlations with those of the Disc task were found in the left ventral inferior frontal gyrus and precuneus. The unification of functional and anatomical studies would thus be fruitful for understanding human language systems from the aspects of both universality and individuality.
Collapse
Affiliation(s)
- Tomoo Inubushi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; Japan Society for the Promotion of Science Tokyo, Japan
| | | |
Collapse
|
20
|
Seghier ML, Price CJ. Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing. BRAIN AND LANGUAGE 2013; 126:133-140. [PMID: 23728081 PMCID: PMC3730055 DOI: 10.1016/j.bandl.2013.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/21/2013] [Accepted: 04/07/2013] [Indexed: 06/02/2023]
Abstract
The ventral occipitotemporal sulcus (vOT) sustains strong interactions with the inferior frontal cortex during word processing. Consequently, activation in both regions co-lateralize towards the same hemisphere in healthy subjects. Because the determinants of lateralisation differ across posterior, middle and anterior vOT subregions, we investigated whether lateralisation in different inferior frontal regions would co-vary with lateralisation in the three different vOT subregions. A whole brain analysis found that, during semantic decisions on written words, laterality covaried in (1) posterior vOT and the precentral gyrus; (2) middle vOT and the pars opercularis, pars triangularis, and supramarginal gyrus; and (3) anterior vOT and the pars orbitalis, middle frontal gyrus and thalamus. These findings increase the spatial resolution of our understanding of how vOT interacts with other brain areas during semantic categorisation on words.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK.
| | | |
Collapse
|
21
|
Musel B, Bordier C, Dojat M, Pichat C, Chokron S, Le Bas JF, Peyrin C. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization. J Cogn Neurosci 2013; 25:1315-31. [PMID: 23574583 DOI: 10.1162/jocn_a_00397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Using large natural scenes filtered in spatial frequencies, we aimed to demonstrate that spatial frequency processing could not only be retinotopically mapped but could also be lateralized in both hemispheres. For this purpose, participants performed a categorization task using large black and white photographs of natural scenes (indoors vs. outdoors, with a visual angle of 24° × 18°) filtered in low spatial frequencies (LSF), high spatial frequencies (HSF), and nonfiltered scenes, in block-designed fMRI recording sessions. At the group level, the comparison between the spatial frequency content of scenes revealed first that, compared with HSF, LSF scene categorization elicited activation in the anterior half of the calcarine fissures linked to the peripheral visual field, whereas, compared with LSF, HSF scene categorization elicited activation in the posterior part of the occipital lobes, which are linked to the fovea, according to the retinotopic property of visual areas. At the individual level, functional activations projected on retinotopic maps revealed that LSF processing was mapped in the anterior part of V1, whereas HSF processing was mapped in the posterior and ventral part of V2, V3, and V4. Moreover, at the group level, direct interhemispheric comparisons performed on the same fMRI data highlighted a right-sided occipito-temporal predominance for LSF processing and a left-sided temporal cortex predominance for HSF processing, in accordance with hemispheric specialization theories. By using suitable method of analysis on the same data, our results enabled us to demonstrate for the first time that spatial frequencies processing is mapped retinotopically and lateralized in human occipital cortex.
Collapse
|
22
|
Perrone-Bertolotti M, Lemonnier S, Bonniot C, Baciu M. Hemisphere specialisation and inter-hemispheric cooperation during a phonological task: Effect of lexicality as assessed by the divided visual field approach. Laterality 2013; 18:216-30. [DOI: 10.1080/1357650x.2011.651142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Cavaco S, Gonçalves A, Pinto C, Almeida E, Gomes F, Moreira I, Fernandes J, Teixeira-Pinto A. Semantic Fluency and Phonemic Fluency: Regression-based Norms for the Portuguese Population. Arch Clin Neuropsychol 2013; 28:262-71. [DOI: 10.1093/arclin/act001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, E Rozman M, Binder JR. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia 2013; 54:314-22. [PMID: 23294162 DOI: 10.1111/epi.12068] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE To more definitively characterize Wada/functional magnetic resonance imaging (fMRI) language dominance discordance rates with the largest sample of patients with epilepsy to date, and to examine demographic, clinical, and methodologic predictors of discordance. METHODS Two hundred twenty-nine patients with epilepsy underwent both a standardized Wada test and a semantic decision fMRI language protocol in a prospective research study. Language laterality indices were computed for each test using automated and double-blind methods, and Wada/fMRI discordance rates were calculated using objective criteria for discordance. Regression analyses were used to explore a range of variables that might predict discordance, including subject variables, Wada quality indices, and fMRI quality indices. KEY FINDINGS Discordant results were observed in 14% of patients. Discordance was highest among those categorized by either test as having bilateral language. In a multivariate model, the only factor that predicted discordance was the degree of atypical language dominance on fMRI. SIGNIFICANCE fMRI language lateralization is generally concordant with Wada testing. The degree of rightward shift of language dominance on fMRI testing is strongly correlated with Wada/fMRI discordance, suggesting that fMRI may be more sensitive than Wada to right hemisphere language processing, although the clinical significance of this increased sensitivity is unknown. The relative accuracy of fMRI versus Wada testing for predicting postsurgical language outcome in discordant cases remains a topic for future research.
Collapse
Affiliation(s)
- Julie K Janecek
- Department of Neurology and the Comprehensive Epilepsy Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Josse G, Joseph S, Bertasi E, Giraud AL. The brain's dorsal route for speech represents word meaning: evidence from gesture. PLoS One 2012; 7:e46108. [PMID: 23049951 PMCID: PMC3458812 DOI: 10.1371/journal.pone.0046108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/28/2012] [Indexed: 11/25/2022] Open
Abstract
The dual-route model of speech processing includes a dorsal stream that maps auditory to motor features at the sublexical level rather than at the lexico-semantic level. However, the literature on gesture is an invitation to revise this model because it suggests that the premotor cortex of the dorsal route is a major site of lexico-semantic interaction. Here we investigated lexico-semantic mapping using word-gesture pairs that were either congruent or incongruent. Using fMRI-adaptation in 28 subjects, we found that temporo-parietal and premotor activity during auditory processing of single action words was modulated by the prior audiovisual context in which the words had been repeated. The BOLD signal was suppressed following repetition of the auditory word alone, and further suppressed following repetition of the word accompanied by a congruent gesture (e.g. [“grasp” + grasping gesture]). Conversely, repetition suppression was not observed when the same action word was accompanied by an incongruent gesture (e.g. [“grasp” + sprinkle]). We propose a simple model to explain these results: auditory and visual information converge onto premotor cortex where it is represented in a comparable format to determine (in)congruence between speech and gesture. This ability of the dorsal route to detect audiovisual semantic (in)congruence suggests that its function is not restricted to the sublexical level.
Collapse
Affiliation(s)
- Goulven Josse
- Institut du Cerveau et de la Moëlle épinière, Hôpital de la Pitié-Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
26
|
Abstract
Reading is a uniquely human task and therefore any sign of neuronal activation that is specific to reading is of considerable interest. One intriguing observation is that ventral occipitotemporal (vOT) activation is more strongly left lateralized for written words than other visual stimuli. This has contributed to claims that left vOT plays a special role in reading. Here, we investigated whether left lateralized vOT responses for words were the consequence of visual feature processing, visual word form selectivity, or higher level language processing. Using fMRI in 82 skilled readers, our paradigm compared activation and lateralization for words and nonlinguistic stimuli during different tasks. We found that increased left lateralization for words relative to pictures was the consequence of reduced activation in right vOT rather than increased activation in left vOT. We also found that the determinants of lateralization varied with the subregion of vOT tested. In posterior vOT, lateralization depended on the spatial frequency of the visual inputs. In anterior vOT, lateralization depended on the semantic demands of the task. In middle vOT, lateralization depended on a combination of visual expertise in the right hemisphere and semantics in the left hemisphere. These results have implications for interpreting left lateralized vOT activation during reading. Specifically, left lateralized activation in vOT does not necessarily indicate an increase in left vOT processing but is instead a consequence of decreased right vOT function. Moreover, the determinants of lateralization include both visual and semantic factors depending on the subregion tested.
Collapse
|
27
|
A practical clinical method to quantify language lateralization in fMRI using whole-brain analysis. Neuroimage 2010; 54:2937-49. [PMID: 20974262 DOI: 10.1016/j.neuroimage.2010.10.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 11/22/2022] Open
Abstract
Surgery is often the only effective treatment for intractable epilepsy, but its benefits must be balanced by potential disruption of eloquent cortical functions. Wada test is the standard technique to lateralize language before surgery; however, it is invasive and associated with complications. fMRI provides an attractive noninvasive alternative, which has been previously shown to correlate with Wada results. However this correlation is imperfect since standard fMRI laterality indices are dependent on a particular arbitrary statistical threshold used in the data processing. We report a novel automated, threshold-independent fMRI methodology to assess language lateralization, which we hypothesize provides a robust and unbiased pre-operative assessment. This hemispheric histogram analysis method can accurately interrogate language lateralization, as validated against the Wada test. Fifty-nine subjects with intractable epilepsy received preoperative evaluation for language lateralization using fMRI. fMRI data then were analyzed using a novel automated threshold-independent method for determining language lateralization. The methodology generated a lateralization score based on hemispheric activation of language areas and a quality index based on multiple factors, including patient motion and signal-to-noise characteristics. Lateralization scores were compared to Wada test results (51 patients), direct cortical stimulation (3 patients), and subdural grid stimulation (5 patients). Data sets were used to generate a probability score for language lateralization for each subject. The lateralization scores correlated well with the objective measures of language lateralization (r(2)=0.46). Cumulative historical data were utilized to prospectively determine probabilities of language lateralization for individual patients. In conclusion, hemispheric language lateralization can be accurately determined using a novel objective and automated methodology that calculates language lateralization in a threshold-independent manner and can be used to determine the probability of language dominance in individual patients.
Collapse
|
28
|
Seghier ML, Kherif F, Josse G, Price CJ. Regional and hemispheric determinants of language laterality: implications for preoperative fMRI. Hum Brain Mapp 2010; 32:1602-14. [PMID: 20814960 PMCID: PMC3193373 DOI: 10.1002/hbm.21130] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/15/2010] [Accepted: 06/24/2010] [Indexed: 11/10/2022] Open
Abstract
Language is typically a function of the left hemisphere but the right hemisphere is also essential in some healthy individuals and patients. This inter-subject variability necessitates the localization of language function, at the individual level, prior to neurosurgical intervention. Such assessments are typically made by comparing left and right hemisphere language function to determine "language lateralization" using clinical tests or fMRI. Here, we show that language function needs to be assessed at the region and hemisphere specific level, because laterality measures can be misleading. Using fMRI data from 82 healthy participants, we investigated the degree to which activation for a semantic word matching task was lateralized in 50 different brain regions and across the entire cortex. This revealed two novel findings. First, the degree to which language is lateralized across brain regions and between subjects was primarily driven by differences in right hemisphere activation rather than differences in left hemisphere activation. Second, we found that healthy subjects who have relatively high left lateralization in the angular gyrus also have relatively low left lateralization in the ventral precentral gyrus. These findings illustrate spatial heterogeneity in language lateralization that is lost when global laterality measures are considered. It is likely that the complex spatial variability we observed in healthy controls is more exaggerated in patients with brain damage. We therefore highlight the importance of investigating within hemisphere regional variations in fMRI activation, prior to neuro-surgical intervention, to determine how each hemisphere and each region contributes to language processing.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK.
| | | | | | | |
Collapse
|
29
|
fMRI assessment of language lateralization: an objective approach. Neuroimage 2010; 50:1446-55. [PMID: 20097290 DOI: 10.1016/j.neuroimage.2010.01.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 11/24/2022] Open
Abstract
Language lateralization based on functional magnetic resonance imaging (fMRI) is often used in clinical neurological settings. Currently, interpretation of the distribution, pattern and extent of language activation can be heavily dependent on the chosen statistical threshold. The aim of the present study was to 1) test the robustness of adaptive thresholding of fMRI data to yield a fixed number of active voxels, and to 2) develop a largely threshold-independent method of assessing when individual patients have statistically atypical language lateralization. Simulated data and real fMRI data in 34 healthy controls and 4 selected epilepsy patients performing a verbal fluency language fMRI task were used. Dependence of laterality on the thresholding method is demonstrated for simulated and real data. Simulated data were used to test the hypothesis that thresholding based upon a fixed number of active voxels would yield a laterality index that was more stable across a range of signal strengths (study power) compared to thresholding at a fixed p value. This stability allowed development of a method comparing an individual to a group of controls across a wide range of thresholds, providing a robust indication of atypical lateralization that is more objective than conventional methods. Thirty healthy controls were used as normative data for the threshold-independent method, and the remaining subjects were used as illustrative examples. The method could also be used more generally to assess relative regional distribution of activity in other neuroimaging paradigms (for example, one could apply it to the assessment of lateralization of activation in a memory task, or to the assessment of anterior-posterior distribution rather than laterality).
Collapse
|
30
|
Carotid endarterectomy improves cerebrovascular reserve capacity preferentially in patients with preoperative impairment as indicated by asymmetric BOLD response to hypercapnia. Eur J Vasc Endovasc Surg 2009; 38:546-51. [PMID: 19744868 DOI: 10.1016/j.ejvs.2009.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/14/2009] [Indexed: 11/24/2022]
Abstract
PURPOSE In patients with symptomatic carotid artery disease the predominant mechanism causing ischaemic injury is considered to be thromboembolic, however compromise of cerebral haemodynamics is considered to be a significant factor. Removal of the embolic source is accepted as the major benefit from carotid endarterectomy (CEA), however improvement in cerebral haemodynamics may be another beneficial outcome as suggested by transcranial doppler (TCD). Blood oxygen level-dependent (BOLD) hypercapnia functional magnetic resonance imaging (fMRI) can be used to map the cerebrovascular reserve (CVR). The aim of this study was to assess the effects of carotid surgery on cerebral haemodynamics in patients with carotid artery disease using a hypercapnia BOLD fMRI and assessment of hemispheric asymmetry. MATERIALS AND METHODS Seventeen patients with symptomatic internal carotid artery stenosis were scanned using a clinical 1.5T MR scanner. Scanning was done immediately prior to and between 4 and 8 weeks after CEA. 10% carbon dioxide was administered to achieve transient episodes of hypercapnia. The data was analyzed using FMRIB Software Library (FSL) software to derive percentage signal change (PSC) for the grey matter of the middle cerebral artery (MCA-GM) territory for both hemispheres. MCA-GM PSC was furthermore normalized to the contralateral hemisphere to derive an Hemispheric Asymmetry Index (hAI) for all patients pre- and postoperatively. RESULTS Ipsilateral GM CVR improved significantly following CEA (2.47% preoperatively vs. 2.73% postoperatively, p=0.038). There was no change in CVR in the contralateral grey and white matter MCA territories (p=0.27, p=0.1). Also, the hAI was significantly more shifted to the ipsilateral hemisphere after CEA (preoperative hAI -0.56, vs. -3.90 postoperatively, p=0.02). Patients with an impaired hAI preoperatively were found to show the greatest improvement in PSC and hAI following CEA (p=0.007). CONCLUSIONS CEA resulted in improved CVR in patients with carotid artery disease as shown by the absolute and hemispheric asymmetry of BOLD response to hypercapnia.. These findings show that benefits from recanalisation may go beyond removal of the embolic source, by improving the cerebrovascular reserve. Moreover, hypercapnia BOLD fMRI may be a useful clinical tool in predicting this therapeutic potential in patients with severe carotid artery disease.
Collapse
|
31
|
Goode SD, Krishan S, Alexakis C, Mahajan R, Auer DP. Precision of cerebrovascular reactivity assessment with use of different quantification methods for hypercapnia functional MR imaging. AJNR Am J Neuroradiol 2009; 30:972-7. [PMID: 19435945 DOI: 10.3174/ajnr.a1496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Tools for noninvasive mapping of hemodynamic function including cerebrovascular reactivity are emerging and may become clinically useful to predict tissue at hemodynamic risk. One such technique assesses blood oxygen level-dependent (BOLD) MR imaging contrast in response to hypercapnia, but the reliability of its quantification is uncertain. The aim of this study was to prospectively investigate the intersubject and interhemispheric variability and short-term reproducibility of hypercapnia functional MR imaging (fMRI) in healthy volunteers and to assess the effects of different methods of quantification and normalization. MATERIALS AND METHODS Sixteen healthy volunteers, (7 women and 9 men) underwent hypercapnia fMRI with a clinical 1.5T scanner; 8 underwent scanning twice. We determined BOLD amplitude changes using a visually defined block design or automated regression to end-tidal (ET) carbon dioxide (CO2). Absolute percent signal intensity changes (PSC) were extracted for whole-brain, gray matter, and middle cerebral artery territory, and also normalized to ETCO2 change. Intersubject and intrasubject (between hemispheres and sessions) coefficients of variation (COV) were derived. We assessed the effects of different quantification methods on reproducibility indices using the t test and U tests. RESULTS The mean change in ETCO2 was 7.8 +/- 3.3 mm Hg. Averaged BOLD increases varied from 2.54% to 2.92%. Short-term reproducibility was good for absolute PSC (4.8% to 10%) but poor for normalized PSC (range, 24% to 27% COV). Intersubject reproducibility varied between 11% and 23% for absolute PSC and, again, was poorer for normalized data (32% to 39%). Interhemispheric reproducibility of absolute PSC was excellent ranging between 1.24 and 2.16% COV. CONCLUSIONS In conclusion, quantification of cerebrovascular reactivity with use of hypercapnia fMRI was found to have good between-session and very good interhemispheric reproducibility. The technique holds promise as a diagnostic tool, especially for sensitive detection of unilateral disease.
Collapse
Affiliation(s)
- S D Goode
- Department of Academic Radiology, Queens Medical Centre, Nottingham, UK.
| | | | | | | | | |
Collapse
|
32
|
Cousin E, Perrone M, Baciu M. Hemispheric specialization for language according to grapho-phonemic transformation and gender. A divided visual field experiment. Brain Cogn 2009; 69:465-71. [DOI: 10.1016/j.bandc.2008.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 09/30/2008] [Accepted: 10/09/2008] [Indexed: 11/29/2022]
|
33
|
Cousin E, Baciu M, Pichat C, Kahane P, Le Bas JF. Functional MRI evidence for language plasticity in adult epileptic patients: Preliminary results. Neuropsychiatr Dis Treat 2008; 4:235-46. [PMID: 18728818 PMCID: PMC2515912 DOI: 10.2147/ndt.s2330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present fMRI study explores the cerebral reorganisation of language in patients with temporal lobe epilepsy, according to the age of seizures onset (early or late) and the hippocampal sclerosis (associated or not). Seven right-handed control volunteers and seven preoperative adult epileptic patients performed a rhyme decision (language condition) and a visual detection (control condition) tasks in visually presented words and unreadable characters, respectively. All patients were left hemisphere dominant for language. Appropriate statistical analyses provided the following preliminary results: (1) patients compared with healthy subjects showed lower degree of hemispheric lateralization with supplementary involvement of the right hemisphere; (2) the degree of hemispheric specialization depends on the considered region; (3) patients with early seizures show signs of temporal and parietal reorganization more frequently than patients with late onset of seizures; (4) patients with early seizures show a tendency for intra-hemispheric frontal reorganisation; (5) associated hippocampal sclerosis facilitates the inter-hemispheric shift of temporal activation. Although our patients were left hemisphere predominant for language, the statistical analyses indicated that the degree of lateralization was significantly lower than in healthy subjects. This result has been considered as the indication of atypical lateralization of language.
Collapse
Affiliation(s)
- Emilie Cousin
- UMR CNRS/UPMF 5105, Laboratoire de Psychologie et Neurocognition France
| | | | | | | | | |
Collapse
|
34
|
Seghier ML. Laterality index in functional MRI: methodological issues. Magn Reson Imaging 2007; 26:594-601. [PMID: 18158224 PMCID: PMC2726301 DOI: 10.1016/j.mri.2007.10.010] [Citation(s) in RCA: 374] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/28/2007] [Accepted: 10/14/2007] [Indexed: 11/26/2022]
Abstract
In functional magnetic resonance imaging (fMRI), hemispheric dominance is generally indicated by a measure called the laterality index (LI). The assessment of a meaningful LI measure depends on several methodological factors that should be taken into account when interpreting LI values or comparing between subjects. Principally, these include the nature of the quantification of left and right hemispheres contributions, localisation of volumes of interest within each hemisphere, dependency on statistical threshold, thresholding LI values, choice of activation and baseline conditions and reproducibility of LI values. This review discusses such methodological factors and the different approaches that have been suggested to deal with them. Although these factors are common to a range of fMRI domains, they are discussed here in the context of fMRI of the language system.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL London, UK.
| |
Collapse
|
35
|
Cousin E, Peyrin C, Pichat C, Lamalle L, Le Bas JF, Baciu M. Functional MRI approach for assessing hemispheric predominance of regions activated by a phonological and a semantic task. Eur J Radiol 2007; 63:274-85. [PMID: 17339089 DOI: 10.1016/j.ejrad.2007.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/20/2007] [Accepted: 01/24/2007] [Indexed: 11/25/2022]
Abstract
This fMRI study performed in healthy subjects aimed at using a statistical approach in order to determine significant functional differences between hemispheres and to assess specialized regions activated during a phonological and during a semantic task. This approach ("flip" method and subsequent statistical analyses of the parameter estimates extracted from regions of interest) allows identifying: (a) hemispheric specialized regions for each language task [semantic (living categorization) and phonological (rhyme detection)] and (b) condition-specific regions with respect to paradigm conditions (task and control). Our results showed that the rhyme-specific task regions were the inferior frontal (sub-region of BA 44, 45) and left inferior parietal (BA 40, 39) lobules. Furthermore, within the inferior parietal lobule, the angular gyrus was specific to target (rhyming) items (related to successfully grapho-phonemic processing). The categorization-specific task regions were the left inferior frontal (sub-region of BA 44, 45) and superior temporal (BA 22) cortices. Furthermore, the superior temporal gyrus was related to non-target (non-living) items (correlated to task difficulty). The relatively new approach used in this study has the advantage of providing: (a) statistical significance of the hemispheric specialized regions for a given language task and (b) supplementary information in terms of paradigm condition-specificity of the activated regions. The results (standard hemispheric specialized regions for a semantic and for a phonological task) obtained in healthy subjects may constitute a basement for mapping language and assessing hemispheric predominance in epileptic patients before surgery and avoiding post-surgical impairments of language.
Collapse
Affiliation(s)
- Emilie Cousin
- Laboratoire de Psychologie et Neurocognition, UMR CNRS 5105, Université Pierre Mendès-France, BP 47, 38040 Grenoble Cedex 09, France
| | | | | | | | | | | |
Collapse
|
36
|
Jansen A, Menke R, Sommer J, Förster AF, Bruchmann S, Hempleman J, Weber B, Knecht S. The assessment of hemispheric lateralization in functional MRI--robustness and reproducibility. Neuroimage 2006; 33:204-17. [PMID: 16904913 DOI: 10.1016/j.neuroimage.2006.06.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 06/08/2006] [Accepted: 06/18/2006] [Indexed: 11/29/2022] Open
Abstract
Various methods have been proposed to calculate a lateralization index (LI) on the basis of functional magnetic resonance imaging (fMRI) data. Most of them are either based on the extent of the activated brain region (i.e., the number of "active" voxels) or the magnitude of the fMRI signal change. The purpose of the present study was to investigate the characteristics of various variants of these approaches and to identify the one that yields the most robust and reproducible results. Robustness was assessed by evaluating the dependence on arbitrary external parameters, reproducibility was assessed by Pearson's correlation coefficient. LIs based on active voxels counts at one single fixed statistical threshold as well as LIs based on unthresholded signal intensity changes (i.e., based on all voxels in a region of interest) yielded neither robust nor reproducible laterality results. Instead, the lateralization of a cognitive function was best described by "thresholded" signal intensity changes where the activity measure was based on signal intensity changes in those voxels in a region of interest that exceeded a predefined activation level. However, not all other approaches should be discarded completely since they have their own specific application fields. First, LIs based on active voxel counts in the form of p-value-dependent lateralization plots (LI=LI(p)) can be used as a straightforward measure to describe hemispheric dominance. Second, LIs based on active voxel counts at variable thresholds (standardized by the total number of active voxels) are a good alternative for big regions of interest since LIs based on signal intensity changes are restricted to small ROIs.
Collapse
Affiliation(s)
- A Jansen
- Department of Neurology, University of Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Krainik A, Rubin C, Grand S, David O, Baciu M, Jaillard A, Troprès I, Lamalle L, Duffau H, Le Bas JF, Segebarth C, Lehéricy S. L’imagerie par résonance magnétique cérébrale fonctionnelle en pratique clinique. ACTA ACUST UNITED AC 2006; 87:607-17. [PMID: 16788535 DOI: 10.1016/s0221-0363(06)74054-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the last decade, functional MRI (fMRI) has become one of the most widely used functional imaging technique in neurosciences. However, its clinical applications remain limited. Despite methodological and practical issues, fMRI data has been validated by different techniques (magnetoencephalography, Wada test, electrical and magnetic stimulations, and surgical resections). In neurosurgical practice, fMRI can identify eloquent areas involved in motor and language functions, and may evaluate characteristics of postoperative neurological deficit including its occurrence, clinical presentation and duration. This may help to inform patients and to prepare postoperative care. fMRI may also identify epileptic foci. In neurological practice, fMRI may help to determine prognosis of recovery after stroke, appropriate medication, and rehabilitation. fMRI may help to identify patients at risk of developing Alzheimer disease. Finally, cerebrovascular reactivity imaging is an interesting approach that might provide new radiological insights of vascular function.
Collapse
Affiliation(s)
- A Krainik
- Service de Neuroradiologie - Unité IRM, CHU Grenoble.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Peyrin C, Schwartz S, Seghier M, Michel C, Landis T, Vuilleumier P. Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes. Neuroimage 2005; 28:464-73. [PMID: 15993630 DOI: 10.1016/j.neuroimage.2005.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 11/30/2022] Open
Abstract
Recent models of visual recognition have suggested that perceptual analysis may start with a parallel extraction of different spatial frequencies (SF), using a preferential coarse-to-fine (low-to-high SF) sequence of processing. A rapid extraction of low spatial frequency (LSF) information may thus provide an initial and crude parsing of the visual scene, subsequently refined by slow but more detailed high spatial frequency (HSF) information. However, the sequence of SF analysis could be flexible, a high-to-low (HtL) being sometimes preferred to a low-to-high (LtH) SF sequence depending on task demands. Furthermore, it has also been suggested that the right vs. left hemisphere might be differentially specialized in LSF vs. HSF analysis, respectively. By manipulating the temporal succession of LSF and HSF stimuli, the present fMRI study investigated whether such hemispheric specialization may underlie the flexible use of different time-course in SF analysis. Participants performed a matching task between two successive images of natural scenes (LSF or HSF) that were displayed either in an LtH (LSF scene presented first and HSF scene second) or in a reverse HtL sequence. A direct inter-hemispheric comparison of the neural responses evoked by each SF sequence revealed greater activations within the right occipito-temporal cortex for the LtH sequence and within the left occipito-temporal cortex for the HtL sequence. These fMRI results suggest that the hemisphere preferentially engaged during the sequential processing of different SF might be determined by the initial SF-band appearing in this sequence, and that both a coarse-to-fine and fine-to-coarse analysis might independently take place in the two hemispheres.
Collapse
Affiliation(s)
- Carole Peyrin
- Laboratory for Neurology and Imaging of Cognition, Clinic of Neurology and Department of Neurosciences, University Medical Center, University of Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|